The maximum value of θ of such the ropes (with a maximum tension of 5,479 N) will be able to support the beam without snapping is:

We can apply the first Newton's law in x and y-direction.
If we do a free body diagram of the system we will have:
x-direction
All the forces acting in this direction are:
(1)
Where:
- T(1) is the tension due to the rope 1
- T(2) is the tension due to the rope 2
Here we just conclude that T(1) = T(2)
y-direction
The forces in this direction are:
(2)
Here W is the weight of the steel beam.
We equal it to zero because we need to find the maximum angle at which the ropes will be able to support the beam without snapping.
Knowing that T(1) = T(2) and W = mg, we have:



T(1) must be equal to 5479 N, so we have:


Therefore, the maximum angle allowed is θ = 37.01°.
You can learn more about tension here:
brainly.com/question/12797227
I hope it helps you!
Answer:
Wear a helmet. Stay visible; use bike lights and/or wear bright clothes. Look and Signal; use hand signals to let drivers know where you're going, try to make eye contact with them and look before you go.
Explanation:
Answer:
1.06 secs
Explanation:
Initial speed of sled, u = 8.4 m/s
Final speed of sled, v = 5.8 m/s
Coefficient of kinetic friction, μ = 0.25
Using the impulse momentum theory, we know that the impulse applied to the sled is equal to change in momentum of the sled:
FΔt = mv - mu
where m = mass of the object
Δt = time interval
F = force applied
The force applied on the sled is the frictional force, which is given as:
F = -μmg
where g = acceleration due to gravity
Therefore:
-μmgΔt = mv - mu
-μmgΔt = m(v - u)
-μgΔt = v - u
Making Δt subject of formula:
Δt = (v - u) / -μg
Δt = (5.8 - 8.4) / (-0.25 * 9.8)
Δt = -2.6/ -2.45
Δt = 1.06 secs
It took the sled 1.06 secs to travel from A to B.
There's no way to tell. Without seeing a diagram of the circuit,
I'll need to know much more about it than you've told me.
I don't know anything about the components or power supply
that are in the circuit, and I don't know where point ' f ' is in it.
Right now, even with the copious volume of all the available
information, no answer to your question is possible.