Answer:
410.196 J/[kg*°C].
Explanation:
1) the equation of the energy is: E=c*m*(t₂-t₁), where E - energy (523 J), c - unknown specific heat of copper, m - mass of this copper [kg], t₂ - the final temperature, t₁ - initial temerature;
2) the specific heat of copper is:
![c=\frac{E}{m*(t_2-t_1)}; \ => \ c=\frac{523}{0.085*(45-30)}=\frac{523}{1.275}=410.196[\frac{J}{kg*C}].](https://tex.z-dn.net/?f=c%3D%5Cfrac%7BE%7D%7Bm%2A%28t_2-t_1%29%7D%3B%20%5C%20%3D%3E%20%5C%20c%3D%5Cfrac%7B523%7D%7B0.085%2A%2845-30%29%7D%3D%5Cfrac%7B523%7D%7B1.275%7D%3D410.196%5B%5Cfrac%7BJ%7D%7Bkg%2AC%7D%5D.)
Answer- C (water and carbon dioxide)
<span>In chemistry, a catalyst can speed up the reaction (or make it initiate easier) by altering the activation energy, lowering it enough to allow the reactants to react more easily. Some negative catalysts or inhibitors can do the same by increasing the activation energy.
</span>
Answer:
Limitations of Rutherford Atomic Model
Although the Rutherford atomic model was based on experimental observations it failed to explain certain things. Rutherford proposed that the electrons revolve around the nucleus in fixed paths called orbits. ... Ultimately the electrons would collapse in the nucleus.