Answer:
A fluorine atom has nine protons and nine electrons, so it is electrically neutral. If a fluorine atom gains an electron, it becomes a fluoride ion with an electric charge of -1.
Answer:
D
Explanation:
According to this question, each model of molecules in the options contains spheres of different colors and sizes representing different types of atoms. The atoms of the same element are the spheres of same color and size while atoms of different element are of different color or size.
Therefore, the model showing a molecule of a substance that is made up of three elements is model D because it is made up of three distinct spheres representing atoms of each element.
- The red sphere is the atom of the first element
- The big dark sphere is the atom of the second element
- The small white sphere is the atom of the third element
Answer:
Step 1-Light Dependent. CO2 and H2O enter the leaf.
Step 2- Light Dependent. Light hits the pigment in the membrane of a thylakoid, splitting the H2O into O2.
Step 3- Light Dependent. ...
Step 4-Light Dependent.
Step 5-Light independent.
Step 6-Light independent.
Answer:
C. 2.70 g/mL
Explanation:
Density is the ratio between the mass of a substance and the volume it occupies. Based on Archimedes' volume, the displaced volume of the aluminium is the volume it occupies. To solve this question we must find the difference in volume between initial volume of water = 30mL and final volume of water + aluminium = 39.26mL. This difference is the volume of the aluminium. With its mass we can find density:
39.26mL - 30mL = 9.26mL
Density = 25.00g / 9.26mL =
2.70g/mL
Right answer is:
<h3>C. 2.70 g/mL
</h3>
Answer:
0.0042 M is the molarity of tartaric acid in this sample of wine.
Explanation:
To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is tartaric acid
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:


0.0042 M is the molarity of tartaric acid in this sample of wine.