Answer:
According to Coulomb’s law, the Ca and Se ions have 4 times the attractive force (2+ × 2-) than that of the K and Br ions (1+ × 1-).
Explanation:
From Coulomb's law, the attractive force between calcium and selenium ions is four times the attractive force between potassium and bromide ions.
This has something to do with size and magnitude of charge. Calcium ions and selenide ions are smaller and both carry greater charge magnitude than potassium and bromide ions. This paves way for greater electrostatic attraction between them when the distance of the charges apart is minimal. Hence a greater lattice energy.
Answer:
it has a fixed volume it can also be compressed
Explanation:
a gases molecules don't move slow because they are not solid and are not compacted.
a gas does not have a fixed shape because there is nothing to hold its shape
Answer
× 10²³ molecules are in 41.8 g of sulfuric acid
Explanation
The first step is to convert 41.8 g of sulfuric acid to moles by dividing the mass of sulfuric acid by its molar mass.
Molar mass of sulfuric acid, H₂SO₄ = 98.079 g/mol

Finally, convert the moles of sulfuric acid to molecules using Avogadro's number.
Conversion factor: 1 mole of any substance = 6.022 × 10²³ molecules.
Therefore, 0.426187053 moles of sulfuric acid is equal

Thus, 2.57 × 10²³ molecules are in 41.8 g of sulfuric acid.
The balanced reaction is 3
Ca
(
s
)
+
N
2
(
g
) → Ca
3
N
2
(
s
).
<u>Explanation</u>:
A chemical equation is said to be balanced when the total number of atoms present on the reactants side is equal to the total number of atoms present on the product side.
The unbalanced chemical equation is as follows,
Ca
(
s
)
+
N
2
(
g
) → Ca
3
N
2
(
s
)
To balance this equation, you need to look at how many atoms of each element are present on each side of the chemical equation.
Calcium has 1 atom on the reactant and 3 on the products side. To balance the reaction we need to multiply the calcium atom by 3 on the reactants side.
3
Ca
(
s
)
+
N
2
(
g
) → Ca
3
N
2
(
s
)
Now Nitrogen has a coefficient of 2 on both sides of the reaction. Hence the balanced chemical equation will thus be
3
Ca
(
s
)
+
N
2
(
g
) → Ca
3
N
2
(
s
)