<u>Answer:</u> The correct option is A) a nitrogen molecule.
<u>Explanation:</u>
Polar covalent molecules are defined as chemical compounds in which the difference in electronegativity between the atoms is not equal to 0. These molecules are formed by heteronuclear molecules.
Heteronuclear molecules are defined as the molecules which are formed by the combination of more than one type of atom having a different nucleus.
Non-polar covalent molecules are defined as chemical compounds in which the difference in electronegativity between the atoms is equal to 0. These molecules are formed by homonuclear molecules.
Homonuclear molecules are defined as the molecules which are formed by the combination of one type of atom having the same nucleus.
From the given options:
It is a homonuclear molecule formed by the combination of 2 nitrogen atoms
- B) A nitrogen monoxide molecule
It is a heteronuclear molecule formed by the combination of 1 nitrogen and 1 oxygen atoms
- C) A linear nitrogen oxide molecule
with nitrogen in the center
It is a heteronuclear molecule formed by the combination of 2 nitrogen and 1 oxygen atom and has some dipole moment. Thus, is considered a polar molecule
- D) A bent nitrogen dioxide molecule
with nitrogen in the center
It is a heteronuclear molecule formed by the combination of 1 nitrogen and 2 oxygen atoms and has some dipole moment. Thus, is considered a polar molecule
Hence, the correct option is A) a nitrogen molecule.
The second one.
Remember, temperature is the AVERAGE kinetic energy. So, looking for highest average kinetic energy means looking for highest temperature, which is 55.
Note: the amount of the substance does not determine the average kinetic energy.
Answer:
<em>- 0.0413°C ≅ - 0.041°C (nearest thousands).</em>
Explanation:
- Adding solute to water causes the depression of the freezing point.
<em>ΔTf = Kf.m,</em>
Where,
ΔTf is the change in the freezing point.
Kf is the freezing point depression constant (Kf = 1.86 °C/m).
m is the molality of the solution.
<em>Molality is the no. of moles of solute per kg of the solution.</em>
- <em>no. of moles of solute (glucose) = mass/molar mass</em> = (8.44 g)/(180.156 g/mol) = <em>0.04685 mol.</em>
<em>∴ molality (m) = no. of moles of solute/kg of solvent</em> = (0.04685 mol)/(2.11 kg) = <em>0.0222 m.</em>
∴ ΔTf = Kf.m = (1.86 °C/m)(0.0222 m) = 0.0413°C.
<em>∴ The freezing point of the solution = the freezing point of water - ΔTf </em>= 0.0°C - 0.0413°C = <em>- 0.0413°C ≅ - 0.041°C (nearest thousands).</em>
Answer: A. The reaction takes place in one step.
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
Molecularity of the reaction is defined as the number of atoms, ions or molecules that must colloid with one another simultaneously so as to result into a chemical reaction.
Order of the reaction is defined as the sum of the concentration of terms on which the rate of the reaction actually depends. It is the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions are defined as the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical reaction.

k= rate constant
a= order with respect to A
b = order with respect to B