Answer:
1.3 M.
Explanation:
- We need to calculate the mass of the solution:
mass of the solution = mass of MgCl₂ + mass of water
mass of MgCl₂ = 20.1 g.
mass of water = d.V = (157.0 mL)(1.0 g/cm³) = 157.0 g.
∴ mass of the solution = mass of MgCl₂ + mass of water = 20.1 g + 157.0 g = 177.1 g.
- Now, we can get the volume of the solution:
V of the solution = (mass of the solution)/(density of the solution) = (177.1 g)/(1.089 g/cm³) = 162.62 mL = 0.163 L.
Molarity is the no. of moles of solute dissolved in a 1.0 L of the solution.
M = (no. of moles of MgCl₂) / (Volume of the solution (L)).
<em>∴ M = (mass/molar mass)of MgCl₂ / (Volume of the solution (L)) =</em> (20.1 g/95.211 g/mol) / (0.163 L) = <em>1.29 M ≅ 1.3 M.</em>
C: One plate is going underneath the other plate and sinking into the soft rock below.
Explanation:
Where plates are moving towards each other they are said to converging, and are called convergent margins.
The lithosphere is broken into series of slabs called plates. The plates moves on the weak and relatively soft asthenosphere below.
Plates have different motion. At some places, they move apart and they are said to be divergent.
When plates moves towards each other, they are convergent. At a convergent margin, a plate collides with another thereby causing the denser plate usually the oceanic plate to subduct into the asthenosphere. In some other cases, the plates can collide and build upward.
Learn more:
Lithosphere brainly.com/question/9582362
#learnwithBrainly
Answer:
0.500 mole of Xe (g) occupies 11.2 L at STP.
General Formulas and Concepts:
<u>Gas Laws</u>
- STP (Standard Conditions for Temperature and Pressure) = 22.4 L per mole at 1 atm, 273 K
<u>Stoichiometry</u>
- Mole ratio
- Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
<em>Identify.</em>
0.500 mole Xe (g)
<u>Step 2: Convert</u>
- [DA] Set up:

- [DA] Evaluate:

Topic: AP Chemistry
Unit: Stoichiometry
Answer:
A sample of helium gas has a volume of 620mL at a temperature of 500 K. If we ... to 100 K while keeping the pressure constant, what will the new volume be?
Explanation:
The number of students is your independent variable