D) because both reactions are occurring at the same rate. They are not equal but their concentrations are constant.
Answer:
2C₃H₇BO₃ + 8O₂ → 6CO₂ + 7H₂O + B₂O₃.
Explanation:
- For balancing a chemical equation, we should apply the law of conversation of mass. It states that the no. of atoms in the reactants side is equal to that of the products side.
So, the balanced equation:
<em>2C₃H₇BO₃ + 8O₂ → 6CO₂ + 7H₂O + B₂O₃.</em>
It is clear that 2.0 moles of C₃H₇BO₃ is completely burned in 8 m oles of oxygen and produce 6 moles of CO₂, 7 moles of H₂O and 1 mole of B₂O₃.
Use the Ideal Gas Law to find the moles of gas first.
Be sure to convert T from Celsius to Kelvin by adding 273.
Also I prefer to deal with pressure in atm rather than mmHg, so divide the pressure by 760 to get it in atm.
PV = nRT —> n = PV/RT
P = 547 mmHg = 547/760 atm = 0.720 atm
V = 1.90 L
T = 33°C = 33 + 273 K = 306 K
R = 0.08206 L atm / mol K
n = (0.720 atm)(1.90 L) / (0.08206 L atm / mol K)(306 K) = 0.0545 mol of gas
Now divide grams by mol to get the molecular weight.
3.42 g / 0.0545 mol = 62.8 g/mol
A bright feild is most commonly used
Answer: 4.1 g of barium precipitated.
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:
Given : moles of barium = 0.030
Molar mass of barium = 137 g/mol
x= 4.1 g
Thus there are 4.1 g of barium that precipitated.