Answer:
127.3° C, (This is not a choice)
Explanation:
This is about the colligative property of boiling point.
ΔT = Kb . m . i
Where:
ΔT = T° boling of solution - T° boiling of pure solvent
Kb = Boiling constant
m = molal (mol/kg)
i = Van't Hoff factor (number of particles dissolved in solution)
Water is not a ionic compound, but we assume that i = 2
H₂O → H⁺ + OH⁻
T° boling of solution - 118.1°C = 0.52°C . m . 2
Mass of solvent = Solvent volume / Solvent density
Mass of solvent = 500 mL / 1.049g/mL → 476.6 g
Mol of water are mass / molar mass
76 g / 18g/m = 4.22 moles
These moles are in 476.6 g
Mol / kg = molal → 4.22 m / 0.4766 kg = 8.85 m
T° boling of solution = 0.52°C . 8.85 m . 2 + 118.1°C = 127.3°C
All the following are equal to Avogadro's number EXCEPT a. the number of atoms of bromine in 1 mol Br₂.
1 mol Br₂ contains Avogadro’s number of molecules of Br₂.
However, each molecule contains two atoms of Br, so there are
<em>2 × Avogadro’s number of Br atoms </em>in 1 mol Br₂.
Saturated fat, milk, cheese, and meat.
1s2 2s2 2p1
fifth electron is in 2p orbital
so answer is 2 2 -1 -1/2 , or 2 2 -1 1/2
*1/2 and -1/2 are spins, so they are interchangeable when writing the first electron in the ml