Hey, lovely! It's a pretty lengthy process but here is a pretty clear video on how to do it. Hope this helps ya!
https://www.khanacademy.org/science/chemistry/chemical-reactions-stoichiome/balancing-chemical-equat...
When 0.514 g of biphenyl (C12H10) undergoes combustion in a bomb calorimeter, the temperature rises from 25.8 C to 29.4 C. Find ⌂E rxn for the combustion of biphenyl in kJ/mol biphenyl. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 5.86 kJ/ C.
<span>The answer is - 6.30 * 10^3 kJ/mol
</span>
Answer: The kilograms of water must evaporate from 8kg of a 25% salt solution to produce 40% salt solution is 3 kg.
Explanation:
According to the ratio and proportion:

where,
= concentration of ist solution = 25%
= mass of ist solution = 8 kg
= concentration of second solution = 40%
= mass of second solution = ? kg


Thus the final solution must have a mass of 5 kg , i.e (8-5)= 3 kg of mass must be evaporated.
Therefore, the mass that must be evaporated from 8kg of a 25% salt solution to produce 40% salt solution is 3 kg.
Hydrochloric acid ionisation is as follows;
HCl ---> H⁺ + Cl⁻
HCl is a strong base so there's complete dissociation of acid to H⁺ ions
The number of HCl moles is equivalent to number of H⁺ ions present
1 L of solution contains - 11.6 moles of H⁺ ions
In 35 ml number of moles - 11.6 mol/L / 1000 ml x 35 ml = 0.406 mol
This number of moles are dissolved in 500 ml
therefore molarity = 0.406 mol /500 ml x 1000 ml = 0.812 M