Answer:
The calculations is shown in the attached file.
Explanation:
- The concept of dipole moment is applied here. the size of the dipole moment is given by multiplying the size of the charge by the distance apart.
- For simpler molecules, the sizes of the dipole moments are approximately proportional to the difference between the electronegativities of the atoms. Dipole moments are usually measured in debyes (D).
Dipole moments (μ) = q x r
The detailed calculation is shown in the attachment.
Answer:
Magnet with a positive and a negative pole
Explanation:
A great analogy to demonstrate what a polar molecule looks like is to imagine a magnet. A magnet has one positively charged end and one negatively charged end, two poles, that is.
Imagine that we have a magnet of a shape of a prism (water molecule has a bent shape). The two base vertices of the face of the triangle are positively charged, that's because hydrogen is less electronegative than oxygen and, hence, the two hydrogen atoms are partially positively charged in a water molecule.
Oxygen is more electronegative than hydrogen meaning it has a greater electron-withdrawing force, so electrons are closer to oxygen within the O-H bonds. Oxygen, as a result, becomes partially negatively charged, so it's our negative pole of the magnet.
Answer:
37.1°C.
Explanation:
- Firstly, we need to calculate the amount of heat (Q) released through this reaction:
<em>∵ ΔHsoln = Q/n</em>
no. of moles (n) of NaOH = mass/molar mass = (2.5 g)/(40 g/mol) = 0.0625 mol.
<em>The negative sign of ΔHsoln indicates that the reaction is exothermic.</em>
∴ Q = (n)(ΔHsoln) = (0.0625 mol)(44.51 kJ/mol) = 2.78 kJ.
Q = m.c.ΔT,
where, Q is the amount of heat released to water (Q = 2781.87 J).
m is the mass of water (m = 55.0 g, suppose density of water = 1.0 g/mL).
c is the specific heat capacity of water (c = 4.18 J/g.°C).
ΔT is the difference in T (ΔT = final temperature - initial temperature = final temperature - 25°C).
∴ (2781.87 J) = (55.0 g)(4.18 J/g.°C)(final temperature - 25°C)
∴ (final temperature - 25°C) = (2781.87 J)/(55.0 g)(4.18 J/g.°C) = 12.1.
<em>∴ final temperature = 25°C + 12.1 = 37.1°C.</em>
Answer: Compounds.
Explanation:
Compounds are formed when an unstable element combines with other elements, they do this by sharing electrons within their outmost shell. Compounds forms when there is a chemical bonding between two or more elements. Examples of compounds includes carbon dioxide (C, O) water (H and O), Sodium chloride (Na, Cl), methane, etc.
The answer is A cause gas clouds hold elements in it