Picoliter is a unit of measurement for liquids.
One picoliter = 1×10⁻⁹ mililiters
So:
19 mL ---- x pL
1×10⁻⁹ mL ---- 1 pL
1×10⁻⁹x = 19
x = 1,9 × 10¹⁰ pL
or 19,000,000,000 pL
Answer: 1.9 × 10¹⁰ pL
Answer:
element having 2+ valence electrons can transfer its more than one electron that is 2 electron completely.
Explanation:
- Group IIA have 2+ valency and two electrons in its valance shell.
- Its Electropositivity is high and have the tendency to donate it two electrons.
- Element of IIA form ionic with most electronegative element.
Examples:
Cu²⁺, Mg²⁺, Sr²⁺ are examples having 2+ valance electron
one of the following is examples of element that have 2+ valence electrons
MgCl₂
Atomic number of Magnesium (Mg) is 12
Electronic Configuration of Mg:
1s², 2s², 2p⁶, 3s²
or
K =2
L = 8
M = 2
So, it have to give its 2 electrons to form a stable compound.
Similarly
Chlorine atomic number is 17
Electronic Configuration of Chlorine:
1s², 2s², 2p⁶, 3s², 3p⁵
or
K =2
L = 8
M = 7
So, it have to gain one electrons to form a stable compound and complete its octet.
So,
Two chlorine atom as a molecule gain 2 electrons from Mg²⁺ atom
So one Mg²⁺ and 2 Cl⁻ atoms form an ionic bond
where in this ionic bond Mg²⁺ transfer its 2 valence electron completely and chlorine molecule accept 2 electrons.
Cl-----Mg------Cl
So the Answer is
element having 2+ valence electrons can transfer its more than one electron that is 2 electron completely.
Answer:
CH₄
Explanation:
To determine the empirical formula of the hydrocarbon, we need to follow a series of steps.
Step 1: Determine the mass of the compound
The mass of the compound is equal to the sum of the masses of the elements that form it.
m(CxHy) = mC + mH = 7.48 g + 2.52 g = 10.00 g
Step 2: Calculate the percent by mass of each element
%C = mC / mCxHy × 100% = 7.48 g / 10.00 g × 100% = 74.8%
%H = mH / mCxHy × 100% = 2.52 g / 10.00 g × 100% = 25.2%
Step 3: Divide each percentage by the atomic mass of the element
C: 74.8/12.01 = 6.23
H: 25.2/1.01 = 24.95
Step 4: Divide both numbers by the smallest one, i.e. 6.23
C: 6.23/6.23 = 1
H: 24.95/6.23 ≈ 4
The empirical formula of the hydrocarbon is CH₄.
85-12 = 73 degrees needed
4.186 J/degree Celsius, so
73 degrees * 4.186 J/degree = 305.578 J to raise 1 gram 73 degrees
there are 675 grams, so 305.578 * 675 = 206265.15 J
2.06 x 10^5 J are needed
D is the answer. You cannot say that anyone is good at anything because it doesn't say that. And they were surveying the class of 2010