hydrogen combines with sulfur is H2S
<span> hydrogen combines with
oxygen H2O</span>
<span>Hydrogen sulfide<span> <span>is the </span></span>chemical compound<span> <span>with the </span></span>formula <span>H<span>
2S</span></span>. It is a colorless gas<span> <span>with the characteristic foul odor of rotten </span></span>eggs<span>; it is heavier than air, very poisonous,
corrosive, flammable, and explosive; properties shared with the denser </span>hydrogen
chalcogenides</span>
<span> </span>
An inter-molecular power is basically an alluring power between neighboring particles. There are three regular sorts of inter-molecular power: lasting dipole-dipole powers, hydrogen bonds and van der Waals' powers.
The boiling point of water at 1 atm is 100 degrees celsius. However, when water is added with another substance the boiling point of it rises than when it is still a pure solvent. This called boiling point elevation, a colligative property. The equation for the boiling point elevation is expressed as the product of the ebullioscopic constant (0.52 degrees celsius / m) for water), the vant hoff factor and the concentration of solute (in terms of molality).
ΔT(CaCl2) = i x K x m = 3 x 0.52 x 0.25 = 0.39 °C
<span> ΔT(Sucrose) = 1 x 0.52 x 0.75 = 0.39 </span>°C<span>
</span><span> ΔT(Ethylene glycol) = 1 x 0.52 x 1 = 0.52 </span>°C<span>
</span><span> ΔT(CaCl2) = 3 x 0.52 x 0.50 = 0.78 </span>°C<span>
</span><span> ΔT(NaCl) = 2 x 0.52 x 0.25 = 0.26 </span>°C<span>
</span>
Thus, from the calculated values, we see that 0.75 mol sucrose dissolved on 1 kg water has the same boiling point with 0.25 mol CaCl2 dissolved in 1 kg water.
(a) 33.6 L of oxygen would be produced.
(b) 106 grams of
would be needed
<h3>Stoichiometric calculations</h3>
1 mole of gas = 22.4 L
(a) From the equation, 2 moles of
produce 3 moles of
. 1 mole of
will, therefore, produce 1.5 moles of
.
1.5 moles of oxygen = 22.4 x 1.5 = 33.6 L
(b) 22.4 L of
is produced at STP. This means that 1 mole of the gas is produced.
From the equation, 1 mole of
requires 1 mole of
.
Molar mass of
= (23x2)+ (12)+(16x3) = 106 g/mol
Mass of 1 mole
= 1 x 106 = 106 grams
More on stoichiometric calculations can be found here: brainly.com/question/27287858
#SPJ1