<span>Answer: 56.6 moles
Explanation:
28.3 moles of Pb would produce twice as much moles as Ag.
28.3 X (2moles Ag/ 1 mol Pb) = 56.6 moles of Ag.</span>
<h3>1</h3>
Species shown in bold are precipitates.
- Ca(NO₃)₂ + 2 KOH → Ca(OH)₂ + 2 KNO₃
- Ca(NO₃)₂ + Na₂C₂O₄ → CaC₂O₄ + 2 NaNO₃
- Cu(NO₃)₂ + 2 KI → CuI₂ + 2 KI
- Cu(NO₃)₂ + 2 KOH → Cu(OH)₂ + 2 KNO₃
- Cu(NO₃)₂ + Na₂C₂O₄ → CuC₂O₄ + 2 NaNO₃
- Ni(NO₃)₂ + 2 KOH → Ni(OH)₂ + 2 KNO₃
- Ni(NO₃)₂ + Na₂C₂O₄ → NiC₂O₄ + 2 NaNO₃
- Zn(NO₃)₂ + 2 KOH → Zn(OH)₂ + 2 KNO₃
- Zn(NO₃)₂ + Na₂C₂O₄ → ZnC₂O₄ + 2 NaNO₃
<h3>2</h3>
A double replacement reaction takes place only if it reduces in the concentration of ions in the solution. For example, the reaction between Ca(NO₃)₂ and KOH produces Ca(OH)₂. Ca(OH)₂ barely dissolves. The reaction has removed Ca²⁺ and OH⁻ ions from the solution.
Some of the reactions lead to neither precipitates nor gases. They will not take place since they are not energetically favored.
<h3>3</h3>
Compare the first and last row:
Both Ca(NO₃)₂ and Zn(NO₃)₂ react with KOH. However, between the two precipitates formed, Ca(OH)₂ is more soluble than Zn(OH)₂.
As a result, add the same amount of KOH to two Ca(NO₃)₂ and Zn(NO₃)₂ of equal concentration. The solution that end up with more precipitate shall belong to Zn(NO₃)₂.
<h3>4</h3>
Compare the second and third row:
Cu(NO₃)₂ reacts with KI, but Ni(NO₃)₂ does not. Thus, add equal amount of KI to the two unknowns. The solution that forms precipitate shall belong to Cu(NO₃)₂.
Charles law gives the relationship between volume and temperature of gas.
It states that at constant pressure volume is directly proportional to temperature
Therefore
V/ T = k
Where V - volume T - temperature in kelvin and k - constant
V1/T1 = V2/T2
Parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
Substituting the values in the equation
267 L/ 480 K = V / 750 K
V = 417 L
Final volume is 417 L
Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, and is the primary interaction occurring in ionic compounds