Answer:
P₂ = 13.9 atm (3 sig. figs.)
Explanation:
The pressure (P), Volume (V) relationship with Temperature (T) & mass (n) held constant is an inverse proportionality. That is Boyles Law ...
P ∝ 1/V => P = k/V => k = P·V
For two pressure-volume conditions, the proportionality constant (k) remains constant where k₁ = k₂ and P₁·V₁ = P₂·V₂ => P₂ = P₁·V₁/V₂
Given:
P₁ = 1.31 atm.
V₁ = 5.51 L
P₂ = ?
V₂ = 0.520 L
V₂ = (1.31 atm)(5.51L)/(0.520L) = 13.88096154 atm (calc. ans.) = 13.9 atm (3 sig. figs.)
Answer:

Explanation:
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 28.01 17.03
N₂ + 3H₂ ⟶ 2NH₃
m/g: 240.0
(a) Moles of NH₃

(b) Moles of N₂

(c) Mass of N₂

The correct answer is a metal atom forms a cation, and a nonmetal atom forms an anion. This is because metals are less electronegative than nonmetals and will therefore give electrons to nonmetals. Atoms that give up electrons will have a positive charge therefore becoming a cation while atoms that accept electrons will have a negative charge therefore becoming an anion.
Ions that have the same charge can't be attracted to each other since it takes a positive and negative charge to cause attractive forces.
A less electronegative atom will transfer electrons to a more electronegative atom.
A metal (cation) can pull electrons from another metal (not an ion) but that does not form an attractive force between the two metals (You will learn more about this when you go over reduction potentials, redox reactions, and electrochemistry).
I hope this helps. Let me know if anything is unclear.