Answer
given,
For helium
Volume,V = 46 L
Pressure,P = 1 atm
Temperature,T = 25°C = 273 +25 = 298 K
R=0.0821 L . atm /mole.K
n₁ = ?
number of moles
we know
P V = n R T

n₁ = 1.89 moles
For oxygen
Volume,V = 12 L
Pressure,P = 1 atm
Temperature,T = 25°C = 273 +25 = 298 K
R=0.0821 L . atm /mole.K
n₂ = ?
number of moles
we know
P V = n R T

n₂ = 0.49 moles
Total volume of tank = 5 L
temperature of tank = 298 K
Partial pressure of helium


P₁ = 9.25 atm
Partial pressure of oxygen


P₂ = 2.39 atm
total pressure
P = P₁ + P₂
P = 9.25 + 2.39
P = 11.64 atm
Answer: Changes in pressure have very little effect on the volume of a liquid. Liquids are slightly incompressible because any increase in pressure can only slightly minimize the distance between the closely packed molecules. Hope this helps.
Explanation:
Answer:
a. up
Explanation:
As per the rule of Fleming left hand, the three fingers should be places in a perpendicular manner i.e. mutually also.
The fore finger depicts the field direction
The middle finger depicts the velocity
And, the thumb finger depicts the force direction that experienced on that particle i.e. charged
So the electrons would be deflects to up
Hence, the correct option is a.
Answer:
the distance between two cars becomes
when blue car travels at legal speed
Explanation:
Initially the relative speed of the two cars is given as


now the relative acceleration of blue car with respect to white car

now the distance between two cars till the relative speed of two cars comes to zero



so the distance between two cars becomes
when blue car travels at legal speed