The answer would be About 3.857yd3
The type of energy present in the vibrating atoms of a substance is a thermal energy and it is a kinetic type of energy. It is associated with movement within the crystal lattice of substance. ... Eventually, it can lead to motion of the atoms which is a form of kinetic energy.
Explanation:
It is known that the relation between pH and
is as follows.
pH = ![pK_{a} + log \frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pK_%7Ba%7D%20%2B%20log%20%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
and, 
Hence, first we will calculate the value of
as follows.

=
= 4.75
Now, we will calculate the value of pH as follows.
pH = ![pK_{a} + log \frac{[\text{sodium acetate}]}{\text{acetic acid}}](https://tex.z-dn.net/?f=pK_%7Ba%7D%20%2B%20log%20%5Cfrac%7B%5B%5Ctext%7Bsodium%20acetate%7D%5D%7D%7B%5Ctext%7Bacetic%20acid%7D%7D)
=
= 4.75 + (-0.677)
= 4.07
Therefore, we can conclude that the pH of given solution is 4.07.
Answer:
714 nm
Explanation:
Using the equation: nλ=d<em>sin</em>θ
where
n= order of maximum
λ= wavelength
d= distance between lines on diffraction grating
θ= angle
n is 1 because the problem states the light forms 1st order bright band
λ is unknown
d=
or 0.0000014 (meters)
sin(30)= 0.5
so
(1)λ=(0.0000014)(0.5)
=0.000000714m or 714 nm
It's replacement reaction. Hope it helped