Answer: yes the reading changes,
And a scale reads pressure not force
Explanation:
Sue from Burkey and Keith from Baron will meet in 2 minutes
Answer: Option b
<u>Explanation:</u>
Time taken can be calculated when distance and the speeds are given. Here speeds of Keith and Sue are given. So, we have to find the relative speeds in order to calculate the time taken.
When two objects travel in same direction the relative speed will be the difference between speeds. Similarly when two objects travel in opposite direction, the relative speed will be the sum of given speeds.
Given:
Speed of Sue from Burkey is 6 km/hr and speed of Keith from Baron is 3 km/hr.
The distance between Burkey and Baron is 300 m.
From the formula, 
where d is distance,s is speed and t is time
It can be derived that, 
s = sum of given speeds = 3 km/hr + 6 km/hr = 9 km/hr
d = 300 m = 0.3 km

Answer:
18%
Explanation:
There are two equal and opposite forces on a floating object: weight and buoyancy.
W = B
The weight of an object is its mass times gravity: W = mg
Buoyancy is the weight of the displaced fluid: W = mf g
Plugging in:
mg = mf g
m = mf
Mass is density times volume:
ρV = ρf Vf
Solving for the ratio of Vf / V:
Vf / V = ρ / ρf
Given that ρ = 0.82 g/mL and ρf = 1.00 g/mL:
Vf / V = 0.82
That means 82% of the object's volume (and therefore, 82% of its mass, assuming uniform density) is submerged. Which means that 18% is above the water line.
Answer:
Jupiter
Explanation:
Since the mass of Jupiter is the greatest from the given choices, it will exert the most force on any object orbiting 100km above its surface.
This is compliance with the Newton's law of universal gravitation which states that "the force of attraction between two bodies is directly proportional to the magnitude of their masses and inversely proportional to the distances between them".
- Therefore, the more the masses of two bodies, the higher the gravitational attraction
- Since the distance is the same, the planet with the greater mass will exert the most force on the satellite.
Answer:
The holiday lasted for 18 days.
Explanation:
Let's assume the number of days are as following:
let the rain in the morning and lovely afternoon = X days
Clear morning and rain in the afternoon = Y days
No rain in the morning and in the afternoon = Z days
Now according to the question
Number of days with rain = X + Y = 13 days
Number of days with clear mornings = Y + Z = 11 days
Number of days with clear afternoons = X + Z = 12 days
Solving above 3 equations, we get
X = 7, Y = 6 and Z = 5
Now total number of days on holiday = X+Y+Z = 7+6+5 =18
Hence, total number of days on holiday = 18 days.