I have two (2) brilliant ideas:
1). Inside the metal that the body of the car is made of, and also between the two sheets of glass that the windows are made of, install a thin layer of material that absorbs RF (radio-wave) energy . . . like the material in the glass window of your microwave oven. Then, no radio waves from the cellular base station can get INTO the car, and no radio waves from your phone can get OUT of the car. The phone can't make a connection to the cellular network, you can't make or receive calls, and you can't connect to Instagram or Brainly, so you might as well just turn it off and save your battery until next time you're outside your car.
2). Somewhere inside the car, like under the dash or in the glove box, install a teeny tiny radio receiver that can recognize the signals coming OUT of your phone. Connect it to the car's electrical system so that when it hears signals from phones inside the car, it it shuts down the car's motor so you can't start or drive. The car only works when phones inside the car are either turned off or in Airplane Mode.
My ideas are so brilliant that I really should patent them, or copyright them, or whatever you do so that other people have to pay you to use your idea. But if you want to use them, that's OK. Just go ahead. I won't mind.
Answer:
The pressure of the remaining gas in the tank is 6.4 atm.
Explanation:
Given that,
Temperature T = 13+273=286 K
Pressure = 10.0 atm
We need to calculate the pressure of the remaining gas
Using equation of ideal gas
For a gas
Where, P = pressure
V = volume
T = temperature
Put the value in the equation
....(I)
When the temperature of the gas is increased
Then,
....(II)
Divided equation (I) by equation (II)
Hence, The pressure of the remaining gas in the tank is 6.4 atm.
Answer:
carbon + oxygen → carbon dioxide
<span>
At the Earth's surface, warm air expands and rises, creating
what is known as an area of low pressure.
Cold air is dense and sinks to the surface to create what is
known as an area of high pressure.</span>
Let s = rate of rotation
<span>Let r = radius of earth = 6,400km </span>
<span>Then solving (s^2) r = g will give the desired rate, from which length of day is inferred. </span>
<span>People would not be thrown off. They would simply move eastward in a straight line while the curved surface of earth fell away from beneath them.</span>