Answer:
<u> Power = 9.75 ×10^8
</u>
Explanation:
- Power is rate of change of energy.
- Here gravitational energy is transferred to kinetic energy of water at a definite rate.
For one second 650m^3 of water flows out down to 150m oh depth.
So, the energy at a height of 150m is transformed to kinetic energy.
for a second,
650m^3 of water flows down ⇒ (1000kg/m^3 × 650m^3) = 6.5×10^5kg of warer flos down.
The total gravitational potential energy stored in water is
= <u>mass of water × height× gravity</u>
= 6.5 ×10^5 × 150 × 10 = 9.75 ×10^8
As it is transformed in a second it is also equal to <u>Power.</u>
Answer:
6957.04N
Explanation:
Using
vf2=vi2+2ad
But vf = 0 .
So convert 50km/hr to m/s, and you need to convert 61 cmto m
(50km/hr)*(1hr/3600s)*(1000m/km) = 13.9m/s
61cm * (1m/100cm) = .61m
So n
0 = (13.9m/s)^2 + 2a(.61m)
a = 158.11m/s^2
So
using F = ma
F = 44kg(158.11m/s^2) = 6957.04N
Explanation:
It is given that,
The ramp is tilted upwards at 25 degrees and Paul is pulling a large crate up the ramp with a rope that angles 10° above the ramp.
Total angle with respect to ramp is 35 degrees.
If Paul pulls with a force of 550 N.
The horizontal component of the force is given by :



The vertical component of the force is given by :



Hence, this is the required solution.
C
Because it’s B-A if u reared the question u will understand
If l and m both are doubled then the period becomes √2*T
what is a simple pendulum?
It is the one which can be considered to be a point mass suspended from a string or rod of negligible mass.
A pendulum is a weight suspended from a pivot so that it can swing freely.
Here,
A certain frictionless simple pendulum having a length l and mass m
mass of pendulum = m
length of the pendulum = l
The period of simple pendulum is:

Where k is the constant.
Now the length and mass are doubled,
m' = 2m
l' = 2l



Hence,
If l and m both are doubled then the period becomes √2*T
Learn more about Simple Harmonic Motion here:
<u>brainly.com/question/17315536</u>
#SPJ4