Answer:
3.982 kg
Explanation:
The latent heat of vaporization = 540 cal/g
= 5.4 ×10⁵ cal/kg
L = 5.4 ×10⁵ × 4.19
= 2.26 × 10⁶ J/kg
Q = 12 × 750,000
= 9, 000, 000
= 9 × 10⁶ J
the maximum number of kg of water (at 100 degrees Celsius) that could be boiled into steam (at 100 degrees Celsius) is:
= 
= 3.982 kg
The time it would take a 2500 W electric kettle to boil away 1.5 Kg of water is 2400 seconds
<h3>How to calculate the time</h3>
Use the formula:
Power × time = mass × specific heat
Given mass = 1. 5kg
Specific latent heat of vaporization = 4000000 J/ Kg
Power = 2500 W
Substitute the values into the formula
Power × time = mass × specific heat
2500 × time = 1. 5 × 4000000
Make 'time' the subject
time = 1. 5 × 4000000 ÷ 2500 = 6000000 ÷ 2500 = 2400 seconds
Therefore, the time it would take a 2500 W electric kettle to boil away 1.5 Kg of water is 2400 seconds.
Learn more about specific latent heat of vaporization:
https://brainly.in/question/1580957
#SPJ1
Answer:
<u>Inelastic collision:</u>
A collision in which there is a loss of Kinetic Energy due to internal friction of the bodies colliding.
<u>Characteristics of an inelastic collision:</u>
- <em>the momentum of the system is conserved</em>
- <em>the momentum of the system is conservedloss of kinetic energy</em><u> </u>
<em>I</em><em>n</em><em> </em><em>a perfectly elastic collision</em><em>, the two bodies </em><em>that</em><em> </em><em>collide with each other stick together.</em>
<u>Elastic </u><u>collision</u><u>:</u>
A collision in which the kinetic energy of the two bodies, before and after the collision, remains the same.
<u>Characteristic</u><u>s</u><u> </u><u>of</u><u> </u><u>elastic</u><u> </u><u>collision</u><u>:</u>
- <em>the</em><em> </em><em>momentum</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>system</em><em> </em><em>is</em><em> </em><em>conserved</em>
- <em>no</em><em> </em><em>loss</em><em> </em><em>o</em><em>f</em><em> </em><em>kinetic</em><em> </em><em>energy</em>
In everyday life, no collision is perfectly elastic.
__________________
ANSWER:
<u>Given examples:</u>
- Two cars colliding with each other form an example of inelastic collision.
<u>Reason:</u>
<em>(</em><em>T</em><em>hey</em><em> </em><em>lose</em><em> </em><em>kinetic</em><em> </em><em>energy</em><em> </em><em>and</em><em> </em><em>come</em><em> </em><em>to</em><em> </em><em>a</em><em> </em><em>stop</em><em> </em><em>after</em><em> </em><em>the</em><em> </em><em>collision</em><em>.</em><em>)</em>
- A ball bouncing after colliding with a surface is an example of elastic collision
<u>Reason:</u>
<em>(a very less amount of kinetic energy is lost)</em>
Answer: Charles's law
Explanation:
Charles's law is one of the gas laws, and it explains the effect of temperature changes on the volume of a given mass of gas at a constant pressure. Usually, the volume of a gas decreases as the temperature decreases and increases as the temperature also increases.
Mathematically, Charles's law can be expressed as:
V ∝ T
V = kT or (V/T) = k
where v is volume, T is temperature in Kelvin, and a k is a constant.
Answer:
the required electrical power when the room air and surroundings are at 30°C.= 52.51822 Watt
Explanation:
Power required to maintain the surface temperature at 150°C from 20°C
P= εσA(T^4-t^4)
P= power in watt
ε= emissivity
A= area of surface
T= 150°C= 423 K
t= 20°C= 303K
/sigma= 5.67×10^{-8} watt/m^2K^4
putting vales we get

P=52.51822 Watt
the required electrical power when the room air and surroundings are at 30°C.= 52.51822 Watt