Answer:
The tangential speed of the tack is 8.19 m/s.
Explanation:
The wheel rotates 3.37 times a second that means wheel complete 3.37 revolutions in a second. Therefore, the angular speed ω of the wheel is given as follows:

Use the relation of angular speed with tangential speed to find the tangential speed of the tack.
The tangential speed v of the tack is given by following expression
v = ω r
Here, r is the distance to the tack from axis of rotation.
Substitute 21.174 rad/s for ω, and 0.387 m for r in the above equation to solve for v.
v = 21.174 × 0.387
v = 8.19m/s
Thus, The tangential speed of the tack is 8.19 m/s.
A binomial nomenclature, more commonly referred to as a scientific name.
They'll vibrate at their characteristic resonant frequency. That depends on the material the object is made of and its shape.
Answer:
Option (e)
Explanation:
If a mass attached to a spring is stretched and released, it follows a simple harmonic motion.
In simple harmonic motion, velocity of the mass will be maximum, kinetic energy is maximum and acceleration is 0 at equilibrium position (at 0 position).
At position +A, mass will have the minimum kinetic energy, zero velocity and maximum acceleration.
Therefore, Option (e) will be the answer.