The quantity of matter in a body regardless of its volume or of any forces acting on it.
Answer:
0.661 s, 5.29 m
Explanation:
In the y direction:
Δy = 2.14 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
(2.14 m) = (0 m/s) t + ½ (9.8 m/s²) t²
t = 0.661 s
In the x direction:
v₀ = 8 m/s
a = 0 m/s²
t = 0.661 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (8 m/s) (0.661 s) + ½ (0 m/s²) (0.661 s)²
Δx = 5.29 m
Round as needed.
A wave is a disturbance that moves along a medium from one end to the other. If one watches an ocean wave moving along the medium (the ocean water), one can observe that the crest of the wave is moving from one location to another over a given interval of time. The crest is observed to cover distance. The speed of an object refers to how fast an object is moving and is usually expressed as the distance traveled per time of travel. In the case of a wave, the speed is the distance traveled by a given point on the wave (such as a crest) in a given interval of time. In equation form,
Static Friction
It is the friction that exists between a stationary object and the surface on which it's resting.
Sliding friction
It is the resistance created by two objects sliding against each other.
Rolling friction:-
It is the force resisting the motion when a body rolls on a surface.
hope this helps x
Explanation:
<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>A</u><u>:</u>
Let the x-axis be (+) towards the right and y-axis be (+) in the upward direction. We can write the net forces on mass
as


Substituting (2) into (1), we get

where
, the frictional force on
Set this aside for now and let's look at the forces on 
<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>B</u><u>:</u>
Let the x-axis be (+) up along the inclined plane. We can write the forces on
as


From (5), we can solve for <em>N</em> as

Set (6) aside for now. We will use this expression later. From (3), we can see that the tension<em> </em><em>T</em><em> </em> is given by

Substituting (7) into (4) we get

Collecting similar terms together, we get

or
![a = \left[ \dfrac{m_B\sin30 - \mu_km_A}{(m_A + m_B)} \right]g\:\:\:\:\:\:\:\:\:(8)](https://tex.z-dn.net/?f=a%20%3D%20%5Cleft%5B%20%5Cdfrac%7Bm_B%5Csin30%20-%20%5Cmu_km_A%7D%7B%28m_A%20%2B%20m_B%29%7D%20%5Cright%5Dg%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%288%29)
Putting in the numbers, we find that
. To find the tension <em>T</em>, put the value for the acceleration into (7) and we'll get
. To find the force exerted by the inclined plane on block B, put the numbers into (6) and you'll get 