Answer:
This question appears incomplete
Explanation:
However, an alpha hydrogen is the hydrogen that is found on the alpha, α-carbon in an organic molecule. Alpha carbon is referred to the first carbon that is attached to a functional group. Generally, compounds that do not have alpha carbon do not have alpha hydrogen. For example, first member of all functional groups do not usually have alpha carbon and hence do not have alpha hydrogen.
Also, Alkanes, alkenes and alkynes do not have also
Answer:
Explanation:
Glucose + ATP → glucose 6-phosphate + ADP The equilibrium constant, Keq, is 7.8 x 102.
In the living E. coli cells,
[ATP] = 7.9 mM;
[ADP] = 1.04 mM,
[glucose] = 2 mM,
[glucose 6-phosphate] = 1 mM.
Determine if the reaction is at equilibrium. If the reaction is not at equilibrium, determine which side the reaction favors in living E. coli cells.
The reaction is given as
Glucose + ATP → glucose 6-phosphate + ADP
Now reaction quotient for given equation above is
![q=\frac{[\text {glucose 6-phosphate}][ADP]}{[Glucose][ATP]}](https://tex.z-dn.net/?f=q%3D%5Cfrac%7B%5B%5Ctext%20%7Bglucose%206-phosphate%7D%5D%5BADP%5D%7D%7B%5BGlucose%5D%5BATP%5D%7D)

so,
⇒ following this criteria the reaction will go towards the right direction ( that is forward reaction is favorable until q = Keq
Answer:
pH= 11.49
Explanation:
Ethanolamine is an organic chemical compound of the formula; HOCH2CH2NH2. Ethanolamine, HOCH2CH2NH2 is a weak base.
From the question, the parameters given are; the concentration of ethanolamine which is = 0.30M, pH value= ??, pOH value= ??, kb=3.2 ×10^-5
Using the formula below;
[OH^-]=√(kb×molarity)----------------------------------------------------------------------------------------------------------(1)
[OH^-] =√(3.2×10^-5 × 0.30M)
[OH^-]= √(9.6×10^-6)
[OH^-]=3.0984×10^-3
pOH= -log[OH^-]
pOH= -log 3.1×10^-3
pOH= 3-log 3.1
pH= 14-pOH
pH= 14-(3-log3.1)
pH= 11+log 3.1
pH= 11+ 0.4914
pH= 11.49
Al2(SO4)3 would be the formula.