Answer:
The limiting reactant is H₂
Explanation:
The reaction of hydrogen (H₂) and carbon monoxide (CO) to produce methanol (CH₃OH) is the following:
2H₂(g) + CO(g) → CH₃OH(g)
From the balanced chemical equation, we can see that 1 mol of CO reacts wIth 2 moles of H₂. So, the stoichiometric ratio is:
2 mol H₂/1 mol CO = 2.0
We have 500 mol of CO and 750 mol of H₂, so we calculate the ratio to establish a comparison:
750 mol H₂/500 mol CO = 1.5
Since 2.0 > 1.5, we have fewer moles of H₂ than are needed to completely react with 500 moles of CO. In fact, we need 1000 moles of H₂ and we have 750 moles. So, the limiting reactant is H₂.
When atoms bond together to form molecules, they share or give electrons. If the electrons are shared equally by the atoms, then there is no resulting charge and the molecule is nonpolar.
B. positive because y increases as x does. It it were negative y would decrease as x increases and it would be 0 if y stayed the same as x increases.
Divide that my the molar mass which is 23 so 1.4087 g
Answer:
radiation and conduction
Explanation:
During a warm summer day, a car became extremely hot. When a student went to open the car door, he burned his fingers. What two forms of energy were responsible for the student burning his fingers?
Solution:
Heat is the transfer of energy from a warmer object to a cooler object. For heat transfer to occur, there have to be a difference in temperature between two objects.
Heat can be transferred in three ways: by conduction, by convection, and by radiation.
Conduction is the transfer of thermal energy between bodies through direct contact. Convection is the transfer of thermal energy through the movement of heat in a liquid or gas. Radiation is the transfer of thermal energy through thermal emission by electromagnetic waves.
During a warm summer day, The sun makes the car to become hot through energy transfer from the sun to the car. When the student touch the car, there is heat transfer as a result of conduction.