Melting point- the temperature at which a substance has changed from a solid to a liquid
freezing- the temperature at which a substance chanes from liquid to a solid
boiling point- the temperature at which a substance changes from a liquid to a gas phase
First we have to find moles of C:
Molar mass of CO2:
12*1+16*2 = 44g/mol
(18.8 g CO2) / (44.00964 g CO2/mol) x (1 mol C/ 1 mol CO2) =0.427 mol C
Molar mass of H2O:
2*1+16 = 18g/mol
As there is 2 moles of H in H2O,
So,
<span>(6.75 g H2O) / (18.01532 g H2O/mol) x (2 mol H / 1 mol H2O) = 0.74mol H </span>
<span>Divide both number of moles by the smaller number of moles: </span>
<span>As Smaaler no moles is 0.427:
So,
Dividing both number os moles by 0.427 :
(0.427 mol C) / 0.427 = 1.000 </span>
<span>(0.74 mol H) / 0.427 = 1.733 </span>
<span>To achieve integer coefficients, multiply by 2, then round to the nearest whole numbers to find the empirical formula:
C = 1 * 2 = 2
H = 1.733 * 2 =3.466
So , the empirical formula is C2H3</span>
Answer:
The volume of a given mas of a gas is directly proportional to the temperature if the pressure remains constant
V is directly proportional to T
V=1/T
V=constant/T
Explanation:
This sounds good so far.
May want to check how you say "and are spread way out" - a better way to say it would be "the crystals are spread out"
Answer:
9 days, or 3 half-lives
Explanation:
5.2x10^5=520000
6.5x10^4=65000
65000/520000=1/8, or 3 half-lives
3x3=9 days
I'm not the greatest at Chem but this seems more like math than Chem :)