Equations of the vertical launch:
Vf = Vo - gt
y = yo + Vo*t - gt^2 / 2
Here yo = 35.0m
Vo is unknown
y final = 0
t = 4.00 s
and I will approximate g to 10m/s^2
=> 0 = 35.0 + Vo * 4 - 5 * (4.00)^2 => Vo = [-35 + 5*16] / 4 = - 45 / 4 = -11.25 m/s
The negative sign is due to the fact that the initial velocity is upwards and we assumed that the direction downwards was positive when used g = 10m/s^2.
Answer: 11.25 m/s
Answer:
451.13 J/kg.°C
Explanation:
Applying,
Q = cm(t₂-t₁)............... Equation 1
Where Q = Heat, c = specific heat capacity of iron, m = mass of iron, t₂= Final temperature, t₁ = initial temperature.
Make c the subject of the equation
c = Q/m(t₂-t₁).............. Equation 2
From the question,
Given: Q = 1500 J, m = 133 g = 0.113 kg, t₁ = 20 °C, t₂ = 45 °C
Substitute these values into equation 2
c = 1500/[0.133(45-20)]
c = 1500/(0.133×25)
c = 1500/3.325
c = 451.13 J/kg.°C
The most crucial information would be its atomic number.
Answer:
a = 0.7267
, acceleration is positive therefore the speed is increasing
Explanation:
The definition of acceleration is
a = dv / dt
they give us the function of speed
v = - (t-1) sin (t² / 2)
a = - sin (t²/2) - (t-1) cos (t²/2) 2t / 2
a = - sin (t²/2) - t (t-1) cos (t²/2)
the acceleration for t = 4 s
a = - sin (4²/2) - 4 (4-1) cos (4²/2)
a = -sin 8 - 12 cos 8
remember that the angles are in radians
a = 0.7267
the problem does not indicate the units, but to be correct they must be m/s²
We see that the acceleration is positive therefore the speed is increasing