Half life is the time that it takes for half of the original value of some amount of a radioactive element to decay.
We have the following equation representing the half-life decay:

A is the resulting amount after t time
Ao is the initial amount = 50 mg
t= Elapsed time
t half is the half-life of the substance = 14.3 days
We replace the know values into the equation to have an exponential decay function for a 50mg sample

That would be the answer for a)
To know the P-32 remaining after 84 days we have to replace this value in the equation:

So, after 84 days the P-32 remaining will be 0.85 mg
The answer is "<span>An atomic nucleus is positively charged because it is composed of protons". An atomic nucleus actually contains nucleons which are made up of both protons and neutrons. Since neutrons are neutral or have no charge, the charge of an atomic nucleus mainly relies on the positive charge of the protons.</span>
15 students times 50 mL per student.
750 mL
Then 750 times two so you can do two experiments per person.
Answer:
The Sun radiates huge amounts of energy. Only a small portion of that energy hits the Earth, but it is enough to light our days, heat our air and land, and create weather systems over the oceans. Most of the energy you will learn about comes from the Sun. The Earth also gives off energy.
Explanation:
Answer:
Quantum mechanical atomic model.
Explanation:
The first model of electronic configuration was given by Bohr's model.
The most accurate model of electronic configuration is the quantum mechanical atomic model.
Bohr's model has various limitations:
1. It does not explain the Zeeman effect and stark effect.
2. It is not valid for multi-electron system.
3. Heisenberg uncertainty principle is not followed by this model
The quantum mechanical atomic model explains all the four quantum numbers for the electronic configuration of an atom in the periodic table.
The quantum mechanical atomic model considered the Heisenberg uncertainty principle.