Answer:
The steps with correct mechanism are given below:
C
1) CH₄(g) + Cl(g) → CH₃(g) + HCl(g) : This is a slow step.
The rate is given as: R1 = k₁[CH₄][Cl]
2) CH₃(g) + Cl₂(g) → CH₃Cl(g) + Cl(g): This is a fast step.
The rate is given as: Rate = k₂[CH₃][Cl₂]
∴ CH₄(g) + Cl₂(g) → CH₃Cl(g) + HCl(g)
Here, the slowest step will be the rate-determining step.
Answer:
We need 8.11 grams of glucose for this solution
Explanation:
Step 1: Data given
Molarity of the glucose solution = 0.300 M
Total volume = 0.150 L
The molecular weight of glucose = 180.16 g/mol
Step 2: Calculate moles of glucose in the solution
Moles glucose = molarity solution * volume
Moles glucose = 0.300 M * 0.150 L
Moles glucose = 0.045 moles glucose
Step 3: Calculate mass of glucose
MAss glucose = moles glucose* molecular weight of glucose
MAss glucose = 0.045 moles * 180.16 g/mol
MAss glucose = 8.11 grams
We need 8.11 grams of glucose for this solution
Answer:
Chlorine
Explanation:
Each arrow represents one electron. Most of the boxes are filled, meaning they have two electrons. The last box only has one arrow, so it only has one electron. If you add it up, you get 17, which is Chlorine.
<span>Answer D. Spray from the hose suggests water in liquid state falling into the soil. The process of elimination: A glacier can be related to water in frozen but in static state. B Fast winds has the element of movement of air, not water. C. A hail storm, movement of water in frozen state. D. Heavy rains looks to be better choice compares to the others.</span>
It is an example of a molecule