Answer:
It takes 12,000 Joules of energy to melt 35 grams of ice at 0 °C
Explanation:
Good Luck!
Answer:
9.82 g of Mg(NO₃)₂
Explanation:
Let's determine the reaction:
2AgNO₃ + MgBr₂ → Mg(NO₃)₂ + 2AgBr
2 moles of nitrate silver reacts with MgBr₂ in order to produce 1 mol of magnesium nitrate and silver bromide.
We determine the moles of AgNO₃
22.5 g . 1mol / 169.87g = 0.132 moles
Ratio is 2:1.
2 moles of silver nitrate can produce 1 mol of magnesium nitrate
Then, our 0.132 moles may produce (0.132 . 1)/ 2 = 0.0662 moles
We convert moles to mass:
0.0662 mol . 148.3 g/ mol = 9.82 g
<u>Answer:</u> The mass of nitrogen gas reacted to produce given amount of energy is 5.99 grams.
<u>Explanation:</u>
The given chemical reaction follows:

We know that:
Molar mass of nitrogen gas = 28 g/mol
We are given:
Enthalpy change of the reaction = 14.2 kJ
To calculate the mass of nitrogen gas reacted, we use unitary method:
When enthalpy change of the reaction is 66.4 kJ, the mass of nitrogen gas reacted is 28 grams.
So, when enthalpy change of the reaction is 14.2 kJ, the mass of nitrogen gas reacted will be = 
Hence, the mass of nitrogen gas reacted to produce given amount of energy is 5.99 grams.
This equation is impossible. NaSO4 is non-existent. Did you mean Na2SO4?