This is True, cars with the same velocity must have the exact same speed.
Answer:
See answer
Explanation:
Given quantities:
![\eta = 0.05\\ W=90[W]\\r=0.0285[m]](https://tex.z-dn.net/?f=%5Ceta%20%3D%200.05%5C%5C%20W%3D90%5BW%5D%5C%5Cr%3D0.0285%5Bm%5D)
where
is the efficiency of the lightbulb (visible light is 5% of the total power),
is the total power of the lightbulb, r is the radius of the lightbulb in meters.
Intensity is power divided by area:

a) Now the effective power is
, therefore:
![I =\frac{\eta*W}{\pi r^2}=\frac{0.05*90}{4\pi (0.0285)^2}=440.87[W/m^2]](https://tex.z-dn.net/?f=I%20%3D%5Cfrac%7B%5Ceta%2AW%7D%7B%5Cpi%20r%5E2%7D%3D%5Cfrac%7B0.05%2A90%7D%7B4%5Cpi%20%280.0285%29%5E2%7D%3D440.87%5BW%2Fm%5E2%5D)
b) Now the intensity is the average poynting vector is related to the magnitudes of the maximum electric field and magnetic field amplitudes, following:
![S_{average}= \frac{EB}{2\mu_{0}}[W/m]](https://tex.z-dn.net/?f=S_%7Baverage%7D%3D%20%5Cfrac%7BEB%7D%7B2%5Cmu_%7B0%7D%7D%5BW%2Fm%5D)
now
and
are related:
and 
replace in 
![S_{average}=I= \frac{c \epsilon_{0}E^2}{2}[W/m]](https://tex.z-dn.net/?f=S_%7Baverage%7D%3DI%3D%20%5Cfrac%7Bc%20%5Cepsilon_%7B0%7DE%5E2%7D%7B2%7D%5BW%2Fm%5D)
we replace the values and we get:

![E = \sqrt{\frac{2(440.8)}{8.85*10^{-12}3*10^8}}=576.24[V/m]](https://tex.z-dn.net/?f=E%20%3D%20%5Csqrt%7B%5Cfrac%7B2%28440.8%29%7D%7B8.85%2A10%5E%7B-12%7D3%2A10%5E8%7D%7D%3D576.24%5BV%2Fm%5D)
therefore
![B=\frac{E}{c}=\frac{576.24}{3*10^{8}}=1.92*10^{-6}[T]](https://tex.z-dn.net/?f=B%3D%5Cfrac%7BE%7D%7Bc%7D%3D%5Cfrac%7B576.24%7D%7B3%2A10%5E%7B8%7D%7D%3D1.92%2A10%5E%7B-6%7D%5BT%5D)
Answer:
<em>The actual dimensions of the classroom are 50 cm x 70 cm</em>
Explanation:
<u>Scaling
</u>
When we need to represent real-world dimensions into small spaces, we use scaling. Distance scaling tells us what is the equivalence between the real units and the scaled units. In this case, we are told that 10 cm is equivalent to 1 meter. As 1 meter is 100 cm, it means that the scale is 100/10=10. Thus, each centimeter in the paper is equivalent to 10 cm in the real distance.
The classroom is 5 cm x 7 centimeters. Scaling back to the real values, the classroom has measures of 50 cm x 70 cm.
The correct answer is A continúe moving with constant velocity
I believe it is a conductor I am learning this myself so I may be wrong