4 Hz is the difference between 510 and the unknown.
<span>Therefore the unknown is either 514 or 506. </span>
<span>If 505 and 506 were struck together, the diff would be 1 Hz </span>
<span>If 505 and 514 were struck toghether, the diff would be 9 Hz which would be difficult to count accurately, </span>
<span>Therefore the unknown is 514</span>
The speed of something in any given direction.
Answer:
0.36 A.
Explanation:
We'll begin by calculating the equivalent resistance between 35 Ω and 20 Ω resistor. This is illustrated below:
Resistor 1 (R₁) = 35 Ω
Resistor 2 (R₂) = 20 Ω
Equivalent Resistance (Rₑq) =?
Since, the two resistors are in parallel connections, their equivalence can be obtained as follow:
Rₑq = (R₁ × R₂) / (R₁ + R₂)
Rₑq = (35 × 20) / (35 + 20)
Rₑq = 700 / 55
Rₑq = 12.73 Ω
Next, we shall determine the total resistance in the circuit. This can be obtained as follow:
Equivalent resistance between 35 Ω and 20 Ω (Rₑq) = 12.73 Ω
Resistor 3 (R₃) = 15 Ω
Total resistance (R) in the circuit =?
R = Rₑq + R₃ (they are in series connection)
R = 12.73 + 15
R = 27.73 Ω
Finally, we shall determine the current. This can be obtained as follow:
Total resistance (R) = 27.73 Ω
Voltage (V) = 10 V
Current (I) =?
V = IR
10 = I × 27.73
Divide both side by 27.73
I = 10 / 27.73
I = 0.36 A
Therefore, the current is 0.36 A.
Usually start on the internet, there is bound to be something or a form of information on it.
Charles Law
Explanation:
Step 1:
It is given that the original volume of the gas is 250 ml at 300 K temperature and 1 atmosphere pressure. We need to find the volume of the same gas when the temperature is 350 K and 1 atmosphere pressure.
Step 2:
We observe that the gas pressure is the same in both the cases while the temperature is different. So we need a law that explains the volume change of a gas when temperature is changed, without any change to the pressure.
Step 3:
Charles law provides the relationship between the gas volume and temperature, at a given pressure
Step 4:
Hence we conclude that Charles law can be used.