<u>Answer:</u> The value of equilibrium constant for the given reaction is 56.61
<u>Explanation:</u>
We are given:
Initial moles of iodine gas = 0.100 moles
Initial moles of hydrogen gas = 0.100 moles
Volume of container = 1.00 L
Molarity of the solution is calculated by the equation:



Equilibrium concentration of iodine gas = 0.0210 M
The chemical equation for the reaction of iodine gas and hydrogen gas follows:

<u>Initial:</u> 0.1 0.1
<u>At eqllm:</u> 0.1-x 0.1-x 2x
Evaluating the value of 'x'

The expression of
for above equation follows:
![K_c=\frac{[HI]^2}{[H_2][I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5BI_2%5D%7D)
![[HI]_{eq}=2x=(2\times 0.079)=0.158M](https://tex.z-dn.net/?f=%5BHI%5D_%7Beq%7D%3D2x%3D%282%5Ctimes%200.079%29%3D0.158M)
![[H_2]_{eq}=(0.1-x)=(0.1-0.079)=0.0210M](https://tex.z-dn.net/?f=%5BH_2%5D_%7Beq%7D%3D%280.1-x%29%3D%280.1-0.079%29%3D0.0210M)
![[I_2]_{eq}=0.0210M](https://tex.z-dn.net/?f=%5BI_2%5D_%7Beq%7D%3D0.0210M)
Putting values in above expression, we get:

Hence, the value of equilibrium constant for the given reaction is 56.61
Answer:
529.2 N
Explanation:
As we have studied the first law of motion, which states that every action has some reaction, equal in magnitude but having an opposite direction.
The force that is acting on the student will be due to gravitational force, that is equal to his weight.
F=mg: 54kg x 9.8m/s^2 =529.2 N
So the weight of student is exerting downwards towards the stool and land. The stool will also exert a force on the student that will be equal in magnitude but opposite in direction, then it will be 529.2 N.
This is because the student is sitting in a constant state and all the weight is exerted on the stool.
Note: This answer is very generic supposing that all the weight of the student is on stool. But, if we suppose that student's legs are on floor so it means the force of gravity acting on the stool has become less because student's mass on stool is less. So the answer would be a force somehow less than 529.2 N. However, since the question asked normal force, it would be weight of student in general terms.
Hope it helps!
Answer:
This is simple, if it has a high flammability, and you light it on fire, then that would be a chemical change.
Explanation:
May I have brainliest please? :)
Answer:
Endergonic reaction or nonspontaneous reaction.
Explanation:
Gibbs free energy is a state function that determines the spontaneity or feasibility of the given reversible chemical reaction, at fixed pressure and temperature. It is given by the equation:
ΔG = ΔH - TΔS
Here, ΔG - change in Gibbs free energy
ΔH- The change in enthalpy of reaction
ΔS - The change in entropy
T- Temperature
When the <u>change in the Gibbs free energy for a given reaction is positive</u> (ΔG > 0), then that chemical reaction is known as an endergonic reaction or nonspontaneous reaction.
Atomic mass is the answer
if u hav any more questions in chemistry ask me! I am very good at chemistry.