Its would be fluorine as its the most electronegative
hope that helps <span />
Answer:
1.24 × 10³ kPa
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 34.5 kPa
- Initial volume of the can (V₁): 473 mL
- Final pressure of the gas (P₂): ?
- Final volume of the can (V₂): 13.16 mL
Step 2: Calculate the final pressure of the gas in the can
If we assume that the gas in the can behaves as an ideal gas and that the temperature remains constant, we can calculate the final pressure of the gas using Boyle's law.
P₁ × V₁ = P₂ × V₂
P₂ = P₁ × V₁ / V₂
P₂ = 34.5 kPa × 473 mL / 13.16 mL = 1.24 × 10³ kPa
Answer:
A. ΔG° = 132.5 kJ
B. ΔG° = 13.69 kJ
C. ΔG° = -58.59 kJ
Explanation:
Let's consider the following reaction.
CaCO₃(s) → CaO(s) + CO₂(g)
We can calculate the standard enthalpy of the reaction (ΔH°) using the following expression.
ΔH° = ∑np . ΔH°f(p) - ∑nr . ΔH°f(r)
where,
n: moles
ΔH°f: standard enthalpy of formation
ΔH° = 1 mol × ΔH°f(CaO(s)) + 1 mol × ΔH°f(CO₂(g)) - 1 mol × ΔH°f(CaCO₃(s))
ΔH° = 1 mol × (-635.1 kJ/mol) + 1 mol × (-393.5 kJ/mol) - 1 mol × (-1206.9 kJ/mol)
ΔH° = 178.3 kJ
We can calculate the standard entropy of the reaction (ΔS°) using the following expression.
ΔS° = ∑np . S°p - ∑nr . S°r
where,
S: standard entropy
ΔS° = 1 mol × S°(CaO(s)) + 1 mol × S°(CO₂(g)) - 1 mol × S°(CaCO₃(s))
ΔS° = 1 mol × (39.75 J/K.mol) + 1 mol × (213.74 J/K.mol) - 1 mol × (92.9 J/K.mol)
ΔS° = 160.6 J/K. = 0.1606 kJ/K.
We can calculate the standard Gibbs free energy of the reaction (ΔG°) using the following expression.
ΔG° = ΔH° - T.ΔS°
where,
T: absolute temperature
<h3>A. 285 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 285K × 0.1606 kJ/K = 132.5 kJ
<h3>B. 1025 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 1025K × 0.1606 kJ/K = 13.69 kJ
<h3>C. 1475 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 1475K × 0.1606 kJ/K = -58.59 kJ