Answer:
H₂O.
Explanation:
- It is clear from the balanced equation:
<em>CH₄ + 2H₂O → CO₂ + 4H₂.</em>
that 1.0 mole of CH₄ reacts with 2.0 moles of H₂O to produce 1.0 mole of CO₂ and 4.0 moles of H₂.
- To determine the limiting reactant, we should calculate the no. of moles of (20 g) CH₄ and (15 g) H₂O using the relation:
<em>n = mass/molar mass</em>
<em></em>
no. of moles of CH₄ = mass/molar mass = (20 g)/(16 g/mol) = 1.25 mol.
no. of moles of H₂O = mass/molar mass = (15 g)/(18 g/mol) = 0.833 mol.
- <em>from the balanced reaction, 1.0 mole of CH₄ reacts with 2.0 moles of H₂O.</em>
So, from the calculated no. of moles: 0.4167 mole of CH₄ reacts completely with 0.833 mole of H₂O and the remaining of CH₄ will be in excess.
<u><em>So, the limiting reactant is H₂O.</em></u>
Transition metals
Most transition metals differ from the metals of Groups 1, 2, and 13 in that they are capable of forming more than one cation with different ionic charges. As an example, iron commonly forms two different ions
Answer:
17 protons
19 neutrons
Explanation:
Chlorine will always have the same amount of protons, and that would be 17 protons.
The atomic mass will change according to how many neutrons are present.
Cl - 35 is comprised of 17 protons and 18 neutrons.
We want to find Cl - 36:
We simply add 1 neutron. 18 + 1 = 19 neutrons.
The density is 3.144 g / cm^3.
<u>Explanation</u>:
If effective number of atom in NaCl type structure, z = 4
a = 705.2 pm ⇒ In centimeter = 705.2
10^-10
Na = 6.023
10^23
density = (molecular weight) (z) / (Na) (a^3)
where molecular weight of KI is 166 g,
Z represents the atomic number
density = (molecular weight) (z) / (Na) (a^3)
= (166
4) / (6.023
10^23)
(705.2
10^-10)
density = 3.144 g / cm^3.
Answer:
C. The Speed of the ball depends on the force used to kick it.
Explanation: