The correct answer is answer choice C. +1. Since electrons have negative charges, losing one electron will cause the atom to have a positive charge of 1. This charge comes from the protons, which, until one electron was lost, balanced out the negative charge of the electrons and caused the atom to be neutral.
Answer:
Explanation:
1 ha = 10⁴ m²
1375 ha = 1375 x 10⁴ m² = 13.75 x 10⁶ m²
In flow in a month = .5 x 10⁶ x 30 m³ = 15 x 10⁶ m³
Net inflow after all loss = 18.5 - 9.5 - 2.5 cm = 6.5 cm = .065 m
Net inflow in volume = 13.75 x 10⁶ x .065 m³= .89375 x 10⁶ m³
Let Q be the withdrawal in m³
Q - 15 x 10⁶ - .89375 x 10⁶ = 13.75 x 10⁶ x .75 = 10.3125 x 10⁶
Q = 26.20 x 10⁶ m³
rate of withdrawal per second
= 26.20 x 10⁶ / 30 x 24 x 60 x 60
= 26.20 x 10⁶ / 2.592 x 10⁶
= 10.11 m³ / s
Answer:
V = 331.59m/s
Explanation:
First we need to calculate the time taken for the shell fire to hit the ground using the equation of motion.
S = ut + 1/2at²
Given height of the cliff S = 80m
initial velocity u = 0m/s²
a = g = 9.81m/s²
Substitute
80 = 0+1/2(9.81)t²
80 = 4.905t²
t² = 80/4.905
t² = 16.31
t = √16.31
t = 4.04s
Next is to get the vertical velocity
Vy = u + gt
Vy = 0+(9.81)(4.04)
Vy = 39.6324
Also calculate the horizontal velocity
Vx = 1330/4.04
Vx = 329.21m/s
Find the magnitude of the velocity to calculate speed of the shell as it hits the ground.
V² = Vx²+Vy²
V² = 329.21²+39.63²
V² = 329.21²+39.63²
V² = 108,379.2241+1,570.5369
V² = 109,949.761
V = √ 109,949.761
V = 331.59m/s
Hence the speed of the shell as it hits the ground is 331.59m/s