Atomic mass = number of protons + number of neutrons = 4+5 = 9 amu
Answer:
Changes in the object's momentum (answer D)
Explanation:
A net force will cause an object to change its velocity, and that will affect the object's momentum, which is defined by the product of the object's mass times its velocity.
So, select the last option (D) in the given list.
Answer:
The solution to the question above is explained below:
Explanation:
For which solid is the lumped system analysis more likely to be applicable?
<u>Answer</u>
The lumped system analysis is more likely to be applicable for the body cooled naturally.
<em>Question :Why?</em>
<u>Answer</u>
Biot number is proportional to the convection heat transfer coefficient, and it is proportional to the air velocity. When Biot no is less than 0.1 in the case of natural convection, then lumped analysis can be applied.
<u>Further explanations:</u>
Heat is a form of energy.
Heat transfer describes the flow of heat across the boundary of a system due to temperature differences and the subsequent temperature distribution and changes. There are three different ways the heat can transfer: conduction, convection, or radiation.
Heat transfer analysis which utilizes this idealization is known as the lumped system analysis.
The Biot number is a criterion dimensionless quantity used in heat transfer calculations which gives a direct indication of the relative importance of conduction and convection in determining the temperature history of a body being heated or cooled by convection at its surface. In heat transfer analysis, some bodies are observed to behave like a "lump" whose entire body temperature remains essentially uniform at all times during a heat transfer process.
Conduction is the transfer of energy in the form of heat or electricity from one atom to another within an object and conduction of heat occurs when molecules increase in temperature.
Convection is a transfer of heat by the movement of a fluid. Convection occurs within liquids and gases between areas of different temperature.
The student's shoulder supports the weight of the bag.
<h3>What is the free body diagram?</h3>
Free-body diagrams are utilized to display the relative direction and strength of all forces that are being applied to an item in a certain scenario. A unique illustration of the geometric diagrams that were covered in a previous lesson is the free-body diagram. We will make use of these graphics throughout the entire study of physics.
A university student is carrying a backpack. One strap is hanging the rucksack immobile from one shoulder.
The weight of the backpack is balanced by the shoulder of the student.
The free-body diagram is attached below.
More about the free body diagram link is given below.
brainly.com/question/24087893
#SPJ4