Midnight is your answer.
plz mark as brainliest. i really need it ;-;.
Just ask if you need more help
Answer:
Explanation:
Your strategy here will be to
use the chemical formula of carbon dioxide to find the number of molecules of
CO
2
that would contain that many atoms of oxygen
use Avogadro's constant to convert the number of molecules to moles of carbon dioxide
use the molar mass of carbon dioxide to convert the moles to grams
So, you know that one molecule of carbon dioxide contains
one atom of carbon,
1
×
C
two atoms of oxygen,
2
×
O
This means that the given number of atoms of oxygen would correspond to
4.8
⋅
10
22
atoms O
⋅
1 molecule CO
2
2
atoms O
=
2.4
⋅
10
22
molecules CO
2
Now, one mole of any molecular substance contains exactly
6.022
⋅
10
22
molecules of that substance -- this is known as Avogadro's constant.
In your case, the sample of carbon dioxide molecules contains
2.4
⋅
10
22
molecules CO
2
⋅
1 mole CO
2
6.022
⋅
10
23
molecules CO
2
=
0.03985 moles CO
2
Finally, carbon dioxide has a molar mass of
44.01 g mol
−
1
, which means that your sample will have a mass of
0.03985
moles CO
2
⋅
44.01 g
1
mole CO
2
=
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
∣
∣
a
a
1.8 g
a
a
∣
∣
−−−−−−−−−
The answer is rounded to two sig figs, the number of sig figs you have for the number of atoms of oxygen present in the sample.
Answer:

Explanation:
Hello,
In this case, since the given 5-M concentration of magnesium chloride is expressed as:

We can notice that one mole of salt contains two moles of chloride ions as the subscript of chlorine is two, in such a way, with the volume of solution we obtain the moles of chloride ions as shown below:

Best regards.
Solid - made up of tightly packed particles, which gives it a solid shape.
Gas - made up of very loose particles, giving it more freedom to roam around as a gas
Liquid - fills into whatever it gets put in, basically takes the shape of the object its in