Answer:
Average atomic mass of the vanadium = 50.9415 amu
Isotope (I) of vanadium' s abundance = 99.75 %= 0.9975
Atomic mass of Isotope (I) of vanadium ,m= 50.9440 amu
Isotope (II) of vanadium' s abundance =(100%- 99.75 %) = 0.25 % = 0.0025
Atomic mass of Isotope (II) of vanadium ,m' = ?
Average atomic mass of vanadium =
m × abundance of isotope(I) + m' × abundance of isotope (II)
50.9415 amu =50.9440 amu× 0.9975 + m' × 0.0025
m'= 49.944 amu
Explanation:
Answer:
The answer to your question is HCl + NaOH ⇒ NaCl + H₂O
Explanation:
Data
Double displacement reaction
Balanced chemical reaction
HCl + NaOH ⇒ NaCl + H₂O
Reactants Elements Products
1 Chlorine (Cl) 1
1 Sodium (Na) 1
2 Hydrogen (H) 2
1 Oxygen (0) 1
As we can see, the reaction is balanced and the coefficients of all reactants and products are 1, but the number is not written in a balanced reaction.
Answer:
3Fe(s)+2O2(g)---->Fe3O4
this way you will have 3irons on both sides and 4 oxygens.
I hope this helps
<h3><u>Answer</u>;</h3>
A. When a reaction is at chemical equilibrium, a change in the system will cause the system to shift in the direction that will balance the change and help the reaction regain chemical equilibrium.
<h3><u>Explanation</u>;</h3>
- Le Chatelier's principle states that when a change or a "stress" is placed on a system that is at equilibrium, the system will shift in such a way to relieve that change or stress.
- The stresses include; changing the concentration of reactants or products, altering the temperature in the system and changing the pressure of the system.
- Therefore; <u><em>when a chemical reaction is at equilibrium and experiences a change in pressure, temperature, or concentration of products or reactants, the equilibrium shifts in the opposite direction to offset the change. </em></u>