<span>1.86 moles of hydrogen gas.
Since what the HCl is reacting with hasn't been mentioned, I'll assume zine. In that case, the balanced reaction is
Zn + 2HCl ==> ZnCl2 + H2
So for every 2 moles of HCl used, 1 mole of hydrogen gas will be generated. So let's figure out how many moles of HCl we have and then divide by 2.
Molarity is defined as moles/liter. So a 2.75 M HCl solution has 2.75 moles of HCl per liter. So the total number of moles we have is:
2.75 mole/L * 1.35 L = 3.7125 mol
And since we get 1 mole H2 per mole of HCl, we get:
3.7125 mol / 2 = 1.85625 mol
Rounding to 3 significant figures gives us 1.86 moles of hydrogen gas.</span>
The correct answer is (3)
I-131 and P-32
The explanation:
according to attached table:
- we can see that the half life of p 32 is 14.28d (more than one hour)
- and the half life of I-131 is 8.021 d
(more than one hour)
and They both have β- decay mode and with half-lives greater than hour.
Please include the statements
A carbon-12 atom has 6 protons (6P) and 6 neutrons (6N). But some types of carbon have more than six neutrons. We call forms of elements that have a different number of neutrons, isotopes. For example, carbon-14 is a radioactive isotope of carbon that has six protons and eight neutrons in its nucleus.
Hope that helps