Answer:
The relevant equation is:
CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
Explanation:
1 mol of calcium carbonate can react to 2 moles of Hydrochloric acid to produce 1 mol of water, 1 mol of calcium chloride and 1 mol of carbon dioxide.
The formed CO₂ is the reason why you noticed bubbles as the reaction took place
Answer:
The correct option is B
Explanation:
One of the claims of John Dalton's atomic theory is that atom is the smallest unit of matter (which suggests that there are no particles smaller than an atom in any matter). This claim has been disproved by the modern atomic theory which established that there are particles smaller than atom (called subatomic particles). These particles are electrons, protons and neutrons.
One of the modern atomic theory was by Neils Bohr, who proposed that <u>electrons move in circular orbits around the central nucleus</u>. Thus, the electrons of iron can also be said to be present in a region of space (circular path) around the nucleus. This proves that option B is the correct option as John Dalton's theory did not even recognize the electron(s) nor the nucleus.
Elements always exist as pair of atoms called molecules .
Explanation:-
- The material which has only one types of similar atoms called element .
- Ex:-Sodium,Carbon etc
The building block that makes up all matter in the universe is atoms.
Hope that helps you:)
Answer:
45.3°C
Explanation:
Step 1:
Data obtained from the question.
Initial pressure (P1) = 82KPa
Initial temperature (T1) = 26°C
Final pressure (P2) = 87.3KPa.
Final temperature (T2) =.?
Step 2:
Conversion of celsius temperature to Kelvin temperature.
This is illustrated below:
T(K) = T(°C) + 273
Initial temperature (T1) = 26°C
Initial temperature (T1) = 26°C + 273 = 299K.
Step 3:
Determination of the new temperature of the gas. This can be obtained as follow:
P1/T1 = P2/T2
82/299 = 87.3/T2
Cross multiply to express in linear form
82 x T2 = 299 x 87.3
Divide both side by 82
T2 = (299 x 87.3) /82
T2 = 318.3K
Step 4:
Conversion of 318.3K to celsius temperature. This is illustrated below:
T(°C) = T(K) – 273
T(K) = 318.3K
T(°C) = 318.3 – 273
T(°C) = 45.3°C.
Therefore, the new temperature of the gas in th tire is 45.3°C