Answer:
The gas was N₂
Explanation:
V = 3.6L
P = 2.0 atm
T = 24.0°C = 297K
R = 0.0821 L.atm/K.mol
m = 8.3g
M = molar mass = ?
Using ideal gas equation;
PV = nRT
n = no. Of moles = mass / molar mass
n = m/M
PV = m/M * RT
M = mRT / PV
M = (8.3*0.0821*297) / (2.0*3.6)
M = 28.10
Since X is a diatomic molecule
M = 28.10 / 2 = 14.05 g/mol
M = Nitrogen
X = N₂
Answer:
B) Iron (c=0.45 J/g°C)
Explanation:
Given that:-
Heat gain by water = Heat lost by metal
Thus,
Where, negative sign signifies heat loss
Or,
For water:
Mass = 120 g
Initial temperature = 21.8 °C
Final temperature = 24.5 °C
Specific heat of water = 4.184 J/g°C
For metal:
Mass = 40.2 g
Initial temperature = 99.3 °C
Final temperature = 24.5 °C
Specific heat of metal = ?
So,



<u>This value corresponds to iron. Thus answer is B.</u>
<u>Answer:</u> The
for the reaction is 72 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)

(2)
( × 2)
(3)
( × 2)
The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times (\Delta H_1)]+[2\times (-\Delta H_2)]+[2\times (\Delta H_3)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%28%5CDelta%20H_1%29%5D%2B%5B2%5Ctimes%20%28-%5CDelta%20H_2%29%5D%2B%5B2%5Ctimes%20%28%5CDelta%20H_3%29%5D)
Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-1184))+(2\times -(-234))+(2\times (394))]=72kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-1184%29%29%2B%282%5Ctimes%20-%28-234%29%29%2B%282%5Ctimes%20%28394%29%29%5D%3D72kJ)
Hence, the
for the reaction is 72 kJ.
1.
- The changing of liquid to a gas.
2.
- The major source of pollution.
3.
- Carbon dioxide and water vapor trapping heat given off by Earth.
4.
- Layer absorbing ultraviolet rays.
5.
- The changing of a gas to a liquid.
6.
- Layer responsible for reflecting radio waves.
7.
- The layer in which weather changes.
