Answer:
2160.26 N.
Explanation:
From the question,
The total energy of the woman = work done by the water.
mg(h+d) = F'×d.......................... Equation 1
m = mass of the the woman, g= acceleration due to gravity, h = height of the platform, d = depth of water reached by the woman, F'= Resistance force exerted on her by the water.
make F' the subject of the equation
F' = mg(h+d)/d............................ Equation 2
Given: m = 65.0 kg, g = 9.8 m/s², h = 11 m, d = 4.6 m.
Substitute into equation 2
F' = 65(9.8)(11+4.6)/4.6
F' = 9937.2/4.6
F' = 2160.26 N.
Answer:
mehhvbhhhhhhhehshrbeheherhhehehthsjrjjrhrn
Explanation:
bdbsbdbi
1) The mass of the continent is 
2) The kinetic energy of the continent is 274.8 J
3) The speed of the jogger must be 2.76 m/s
Explanation:
1)
The continent is a slab of side 5900 km (so the surface is 5900 x 5900, assuming it is a square) and depth 26 km, therefore its volume is:

The mass of the continent is given by

where:
is its density
is its volume
Substituting, we find the mass:

2)
To find the kinetic energy, we need to convert the speed of the continent into m/s first.
The speed is
v = 1.6 cm/year
And we have:
1.6 cm = 0.016 m

So, the speed is

Now we can find the kinetic energy of the continent, which is given by

where
is the mass
is the speed
Substituting,

3)
The jogger in this part has the same kinetic energy of the continent, so
K = 274.8 J
And its mass is
m = 72 kg
We can write his kinetic energy as

where
v is the speed of the man
And solving the equation for v, we find his speed:

Learn more about kinetic energy:
brainly.com/question/6536722
#LearnwithBrainly
Decrease. Gravity is stronger here on earth than on the moon.