1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Klio2033 [76]
3 years ago
8

Are matter and weight the same thing?

Physics
2 answers:
astraxan [27]3 years ago
8 0
No, matter and weight are different
Genrish500 [490]3 years ago
7 0

Answer:

A: Mass is the amount of matter in an object and weight is the measurement of the gravitational pull on an object. The mass of an object is the same no matter where it is, but the weight of an object changes with the location of that object.

Explanation:

You might be interested in
Most of the stars in the Milky Way will end their lives as
umka21 [38]
<span> </span>Most of the stars in the Milky Way will end their lives as white dwarfs
4 0
2 years ago
Read 2 more answers
Car A hits car B (initially at rest and of equal mass) from behind while going 15 m/s Immediately after the collision, car B mov
Mamont248 [21]

Given :

Initial speed of car A is 15 m/s and initial speed of car B is zero.

Final speed of car A is zero and final speed of car B is 10 m/s.

To Find :

What fraction of the initial kinetic energy is lost in the collision.

Solution :

Initial kinetic energy is :

K.E_i = \dfrac{15^2m}{2} + 0\\\\K.E_i = \dfrac{225 m}{2}

Final kinetic energy is :

K.E_f = \dfrac{10^2m}{2} + 0\\\\K.E_f = \dfrac{100m}{2}

Now, fraction of initial kinetic energy loss is :

Loss = \dfrac{\dfrac{225m}{2}-\dfrac{100m}{2}}{\dfrac{100m}{2}}\\\\Loss = \dfrac{125}{100}\\\\Loss = 1.25

Therefore, fraction of initial kinetic energy loss in the collision is 1.25 .

6 0
2 years ago
What is direct result of having greenhouse gases in the atmosphere?​
11111nata11111 [884]
Earths atmosphere heats up polars melt
4 0
3 years ago
To visit your favorite ice cream shop, you must travel 490 m west on Main Street and then 920 m south on Division Street. Suppos
topjm [15]

Answer:

a) The magnitude of your average velocity during the 121 s is 8.61 m/s.

b) The direction of the average velocity is 61.9° south of west.

c) Your average speed during the trip is 11.7 m/s

Explanation:

Hi there!

a) The average velocity (a.v) is calculated as the displacement divided by the time it took to do such a displacement.

The displacement is calculated as the distance between the initial position and the final position:

Displacement = Δ(x,y) = final position - initial position

Let's consider that your initial position is the origin of our frame of reference and let's also consider that west and south are positive directions (+x and +y respectively). Then the displacement vector will be:

Δ(x,y) = final positon - initial position

Δ(x,y) = (490, 920) m - (0, 0) m = (490, 920) m

The average velocity will be:

a.v = Δ(x,y) / t

a.v = (490, 920) m / 121 s

a.v = (4.05, 7.60) m/s

The magnitude of the average velocity is calculated as follows:

 

The magnitude of your average velocity during the 121 s is 8.61 m/s.

b) To find the direction of the average velocity, we have to use trigonometric rules of right triangles. Notice that the x and y-components of the average velocity (vx and vy) together with the average velocity vector (v), with magnitude 8.61 m/s, form a triangle (see figure).

Also, notice that v is the hypotenuse of the triangle and that vx is the side adjacent to the angle θ while vy is the side opposite to θ.

Using trigonometry, we can calculate the value of the angle θ:

cos θ = adjacent side / hypotenuse

cos θ = vx / v

cos θ = 4.05 m/s / 8.61 m/s

θ = 61.9°

The direction of the average velocity is 61.9° south of west.

c) The average speed (a.s) is calculated as the traveled distance (d) divided by the time it took to cover that distance (t). In total, you traveled (490 m + 920 m) 1410 m in 121 s, then the average speed will be:

a.s = d/t

a.s = 1410 m / 121 s

a.s = 11.7 m/s

Your average speed during the trip is 11.7 m/s

5 0
3 years ago
Light strikes a 5.0-cm thick sheet of glass at an angle of incidence in air of 50°. the sheet has parallel faces and the glass h
mestny [16]
<span>Answer: sin(incidence)/sin(refraction) = n_refraction/n_incidence sin(50) / sin(x) = 1.5 / 1 sin(50)/1.5 = sin(x) sin(x) = 0.511 x = 30.71o B] 50 degrees, same as the angle going in. You can show that by reversing the steps in A. sin(30.7)/sin(x) = 1/1.5 C] The glass is 5 cm thick. The reference angle = 30.7o Tan(30.7) = displacement / thickness Tan(30.7) = x / 5 5*sin(30.7) = x x = 2.97 cm which is the displacement.</span>
4 0
3 years ago
Other questions:
  • Is the desert hot or cold?
    7·2 answers
  • Ways that industry and agriculture use physical properties to separate substances
    13·1 answer
  • Is<br>pressure<br>and<br>electric<br>charge<br>a vector<br>quantity? Explain.​
    5·1 answer
  • In a collision, the __________ collision is when an unsecured driver strikes the inside of the vehicle.
    8·2 answers
  • Please answer ASAP, and please don't joke around and actually do answer my question. I will give you brainliest if you answer it
    15·1 answer
  • CAN SOMEONE PLEASE TELL ME WHAT THIS WHEEL IS CALLED.WILL GIVE BRAINLIEST
    9·2 answers
  • An airplane needs to reach a velocity of 199.0 km/h to take off. On a 2000-m runway, what is the minimum acceleration necessary
    5·1 answer
  • A bag of groceries is on the back seat of your car as you stop for a stop light. The bag does not slide. Apply your analysis to
    15·1 answer
  • Why does lowering the temperature of an object increase its density
    7·1 answer
  • These organisms reproduce by dividing and becoming two cells
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!