Answer:
The answer is below
Explanation:
The practical considerations you might encounter when you increase the moment of inertia (I) while keeping the cross-sectional area fixed are:
1. Shapes of moment of inertia: Engineers should consider or know the different shapes of moment of inertia for different shape
2. Understanding the orientation of the beam: this will allow engineers to either increase or decrease the moment of inertia of a beam without increasing its cross sectional area.
Answer:
Following are the responses to the given question:
Explanation:
Answer:
2062 lbm/h
Explanation:
The air will lose heat and the oil will gain heat.
These heats will be equal in magnitude.
qo = -qa
They will be of different signs because one is entering iits system and the other is exiting.
The heat exchanged by oil is:
qo = Gp * Cpo * (tof - toi)
The heat exchanged by air is:
qa = Ga * Cpa * (taf - tai)
The specific heat capacity of air at constant pressure is:
Cpa = 0.24 BTU/(lbm*F)
Therefore:
Gp * Cpo * (tof - toi) = Ga * Cpa * (taf - tai)
Ga = (Gp * Cpo * (tof - toi)) / (Cpa * (taf - tai))
Ga = (2200 * 0.45 * (150 - 100)) / (0.24 * (300 - 200)) = 2062 lbm/h