Answer:
An AI operated automatic garbage collection system
Explanation:
There is always an issue in my neighbourhood with the garbagemen coming on time so having an automatic system will help in the overall efficiency in the task
Answer:
A selective surface with large absorption for solar radiation and high reflectance for thermal infrared radiation was produced by use of surface oxidation of stainless steel. The surfaces were studied for use with concentrated light in a solar power plant at temperatures of 400°C and higher.
In order to investigate the relation between surface treatment and optical properties, stainless steels (AISI 304 and 430) which were submitted to different chemical and mechanical surface treatments, were used. To increase the spectral selectivity, these surfaces were treated in air and in vacuum at different temperatures and times. The optical properties of these films were investigated. Visual and infrared spectral absorptances were measured at room temperature. The thermal hemispherical emittance and absorptance were obtained by a calorimetric method at 200°C. It was noticed that these chemically and mechanically treated stainless steel surfaces have good spectral properties without further oxidations. This is very important for high temperature uses. The best values are found for samples 7 and 8 under vacuum and air. These two samples with mechanically ground surfaces retained their selectivity and specularity after several hours oxidation. One can conclude that the surface ground treatment confers good selectivity on the steel surfaces for use in concentrating solar collectors with a working temperature of 500°C.
Sample surfaces were subjected to long temperature ageing tests in order to gain some idea of the thermal stability of the surfaces. The results promise better-performing surface and the production of durable selective finishes at, possibly, lower cost than competing processes.
Explanation:
Solution:
Given that :
Volume flow is, 
So, 
Therefore, the equation of a single straight vessel is given by
......................(i)
So there are 100 similar parallel pipes of the same cross section. Therefore, the equation for the area is

or 
Now for parallel pipes
...........(ii)
Solving the equations (i) and (ii),




Therefore,

or 
Thus the answer is option A). 10
Answer: The exit temperature of the gas in deg C is
.
Explanation:
The given data is as follows.
= 1000 J/kg K, R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)
= 100 kPa, 

We know that for an ideal gas the mass flow rate will be calculated as follows.

or, m = 
=
= 10 kg/s
Now, according to the steady flow energy equation:




= 5 K
= 5 K + 300 K
= 305 K
= (305 K - 273 K)
= 
Therefore, we can conclude that the exit temperature of the gas in deg C is
.
Answer:
Part a: The yield moment is 400 k.in.
Part b: The strain is 
Part c: The plastic moment is 600 ksi.
Explanation:
Part a:
As per bending equation

Here
- M is the moment which is to be calculated
- I is the moment of inertia given as

Here
- b is the breath given as 0.75"
- d is the depth which is given as 8"



The yield moment is 400 k.in.
Part b:
The strain is given as

The stress at the station 2" down from the top is estimated by ratio of triangles as

Now the steel has the elastic modulus of E=29000 ksi

So the strain is 
Part c:
For a rectangular shape the shape factor is given as 1.5.
Now the plastic moment is given as

The plastic moment is 600 ksi.