Answer: True
Explanation:
Circuit breakers are used to stop the current by using heat to detect if it has a critically large current. Defoggers use heat to stop condensation on the windows.
Answer:
2062 lbm/h
Explanation:
The air will lose heat and the oil will gain heat.
These heats will be equal in magnitude.
qo = -qa
They will be of different signs because one is entering iits system and the other is exiting.
The heat exchanged by oil is:
qo = Gp * Cpo * (tof - toi)
The heat exchanged by air is:
qa = Ga * Cpa * (taf - tai)
The specific heat capacity of air at constant pressure is:
Cpa = 0.24 BTU/(lbm*F)
Therefore:
Gp * Cpo * (tof - toi) = Ga * Cpa * (taf - tai)
Ga = (Gp * Cpo * (tof - toi)) / (Cpa * (taf - tai))
Ga = (2200 * 0.45 * (150 - 100)) / (0.24 * (300 - 200)) = 2062 lbm/h
Answer:
Both Technician A and B
Explanation:
In a vehicle suspension system, a shock absorber has the functions such as; limiting the movement of the vehicle, stabilizing the ride, stabilizing the tires of the vehicle, minimizing wear and tear in the vehicle and decreasing the overall suspension tear. Some of the ways of maintaining shock absorbers is to inspect the strut for leaks.Shock oil sometimes leaks to cover the seals with a transparent liquid.
Answer: The net force in every bolt is 44.9 kip
Explanation:
Given that;
External load applied = 245 kip
number of bolts n = 10
External Load shared by each bolt (P_E) = 245/10 = 24.5 kip
spring constant of the bolt Kb = 0.4 Mlb/in
spring constant of members Kc = 1.6 Mlb/in
combined stiffness factor C = Kb / (kb+kc) = 0.4 / ( 0.4 + 1.6) = 0.4 / 2 = 0.2 Mlb/in
Initial pre load Pi = 40 kip
now for Bolts; both pre load Pi and external load P_E are tensile in nature, therefore we add both of them
External Load on each bolt P_Eb = C × PE = 0.2 × 24.5 = 4.9 kip
So Total net Force on each bolt Fb = P_Eb + Pi
Fb = 4.9 kip + 40 kip
Fb = 44.9 kip
Therefore the net force in every bolt is 44.9 kip
The maintenance is in charge of controlling that all the machines of a company are constantly running in order to avoid damages that cause loss of money when the machines fail.
The maintenance based on vibration monitoring allows to predict failures in some rotating machines such as:
1. worn bearings
2.alignment
3.balance
4. affected gears
5. bent shafts
6. rocks
7.gags
8. eccentricity
9. failures of electrical origin