1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aniked [119]
2 years ago
6

A. 50

Engineering
1 answer:
Licemer1 [7]2 years ago
5 0

Answer:

love

Explanation: you

You might be interested in
A storm sewer is carrying snow melt containing 1.2 g/L of sodium chloride into a small stream. The stream has a naturally occurr
galina1969 [7]

Answer:

Given Data:

concentration of sewer Csewer = 1.2 g/L

converting into mg/L = Csewer = 1.2 g/L x 1000 mg/g = 1200 mg/L

flow rate of sewer Qsewer = 2000 L/min

concentration of sewer Cstream = 20 mg/L

flow rate of sewer Qstream = 2m3/s

converting Q into L/min = 2m3/s x 1000 x 60 = 120000 L/min

mass diagram is

6 0
3 years ago
11. Which of these is NOT true when dealing with refrigerants?
Alexus [3.1K]
Answer is an increase in pressure will cause an decrease in the pressure
4 0
3 years ago
For methyl chloride at 100°C the second and third virial coefficients are: B = −242.5 cm 3 ·mol −1 C = 25,200 cm 6 ·mol −2 Calcu
bogdanovich [222]

Answer:

a)W=12.62 kJ/mol

b)W=12.59 kJ/mol

Explanation:

At T = 100 °C the second and third virial coefficients are

B = -242.5 cm^3 mol^-1

C = 25200 cm^6  mo1^-2

Now according isothermal work of one mole methyl gas is

W=-\int\limits^a_b {P} \, dV

a=v_2\\

b=v_1

from virial equation  

\frac{PV}{RT}=z=1+\frac{B}{V}+\frac{C}{V^2}\\   \\P=RT(1+\frac{B}{V} +\frac{C}{V^2})\frac{1}{V}\\

And  

W=-\int\limits^a_b {RT(1+\frac{B}{V} +\frac{C}{V^2}\frac{1}{V}  } \, dV

a=v_2\\

b=v_1

Now calculate V1 and V2 at given condition

\frac{P1V1}{RT} = 1+\frac{B}{v_1} +\frac{C}{v_1^2}

Substitute given values P_1\\ = 1 x 10^5 , T = 373.15 and given values of coefficients we get  

10^5(v_1)/8.314*373.15=1-242.5/v_1+25200/v_1^2

Solve for V1 by iterative or alternative cubic equation solver we get

v_1=30780 cm^3/mol

Similarly solve for state 2 at P2 = 50 bar we get  

v_1=241.33 cm^3/mol

Now  

W=-\int\limits^a_b {RT(1+\frac{B}{V} +\frac{C}{V^2}\frac{1}{V}  } \, dV

a=241.33

b=30780

After performing integration we get work done on the system is  

W=12.62 kJ/mol

(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get  

         dV=RT(-1/p^2+0+C')dP

Hence work done on the system is  

W=-\int\limits^a_b {P(RT(-1/p^2+0+C')} \, dP

a=v_2\\

b=v_1

by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work  

W=12.59 kJ/mol

The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series  

8 0
3 years ago
I will mark as brainliest !
Sliva [168]

Answer:

7.8 Mph

Explanation:

Rate of cycling = 1.1 rev/s

Rear wheel diameter = 26 inches

Diameter of sprocket on pedal = 6 inches

Diameter of sprocket on rear wheel = 4 inches

Circumference of rear wheel =  \pi d=26\piπd=26π

Speed would be

\begin{gathered}\text{Rate of cycling}\times \frac{\text{Diameter of sprocket on pedal}}{\text{Diameter of sprocket on rear wheel}}\times{\text{Circumference of rear wheel}}\\ =1.1\times \frac{6}{4}\times 26\pi\\ =134.77432\ inches/s\end{gathered}Rate of cycling×Diameter of sprocket on rear wheelDiameter of sprocket on pedal×Circumference of rear wheel=1.1×46×26π=134.77432 inches/s

Converting to mph

1\ inch/s=\frac{1}{63360}\times 3600\ mph1 inch/s=633601×3600 mph

134.77432\ inches/s=134.77432\times \frac{1}{63360}\times 3600\ mph=7.65763\ mph134.77432 inches/s=134.77432×633601×3600 mph=7.65763 mph

The Speed of the bicycle is 7.8 mph

3 0
3 years ago
2. The moist weight of 0.1 ft3 of soil is 12.2 lb. If the moisture content is 12% and the specific gravity of soil solids is 2.7
adell [148]

The answers to dry unit weight, void ratio, porosity, degree of saturation, volume occupied by water are respectively;

γ_d = 108.93 lb/ft³; e = 0.56; n = 0.36; S = 0.58; V_w = 0.021 ft³

<h3>Calculation of Volume and Weight of soil</h3>

We are given;

Moist weight; W = 12.2 lb

Volume of moist soil; V = 0.1 ft³

moisture content; w = 12% = 0.12

Specific gravity of soil solids; G_s = 2.72

A) Formula for dry unit weight is;

γ_d = γ/(1 + w)

where γ_w is moist unit weight as;

γ_w = W/V

γ_w = 122/0.1 = 122 lb/ft³

Thus;

γ_d = 122/(1 + 0.12)

γ_d = 108.93 lb/ft³

B) Formula for void ratio is;

e = [(G_s * γ_w)/γ_d] - 1

e = [(2.72 * 122)/108.93] - 1

e = 0.56

C) Formula for porosity is;

n = e/(1 + e)

n = 0.56/(1 + 0.56)

n = 0.36

D) Formula for degree of saturation is;

S = (w * G_s)/e

S = (0.12 * 2.72)/0.56

S = 0.58

E) Volume occupied by water is gotten from;

V_w = S*V_v

where;

V_v is volume of voids = nV

V_v = 0.36*0.1

V_v = 0.036 ft³

Thus;

V_w = 0.58 * 0.036

V_w = 0.021 ft³

Read more about Specific Gravity of Soil at; brainly.com/question/14932758

4 0
2 years ago
Other questions:
  • Another focus of effective communication, according to Stephen Covey, is ensuring that:
    10·2 answers
  • Name two types of battery chargers that are used in mechanics
    14·1 answer
  • What is the maximum thermal efficiency possible for a power cycle operating between 600P'c and 110°C? a). 47% b). 56% c). 63% d)
    15·1 answer
  • Two points along a wire are labeled Xand Y. The current is measured to be iXY= –3A.The reference direction of iXY is defined by
    11·1 answer
  • If superheated water vapor at 30 MPa iscooled at ​constant pressure​, it will eventually become saturated vapor, and with suffic
    5·1 answer
  • A plane wall of thickness 2L = 60 mm and thermal conductivity k= 5W/m.K experiences uniform volumetric heat generation at a rate
    9·1 answer
  • *100 POINTS
    6·2 answers
  • How can I skip more helppppppppppppppppppppppp
    9·2 answers
  • What Is Photosynthesis ?​
    7·2 answers
  • I need to solve for d
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!