Answer:
The magnitude of the average force on the wall during the collision is 6 N.
Explanation:
Given;
mass of snowball, m = 120 g = 0.12 kg
velocity of the snowball, v = 7.5 m/s
duration of the collision between the snowball and the wall, t = 0.15 s
Magnitude of the average force can be calculated by applying Newton's second law of motion;
F = ma
where;
a is acceleration = v / t
a = 7.5 / 0.15
a = 50 m/s²
F = ma
F = 0.12 x 50
F = 6 N
Therefore, the magnitude of the average force on the wall during the collision is 6 N.
<span>Weather satellites and weather stations are similar, because they both have the same purpose. They are used to help predict future weather as well as as current conditions. The satellites are viewing the weather from a distance at a large scope, but stations are using data they collect on earth to help with the same task.</span>
Answer:
In a collision, the velocity change is always computed by subtracting the initial velocity value from the final velocity value. If an object is moving in one direction before a collision and rebounds or somehow changes direction, then its velocity after the collision has the opposite direction as before.
Answer:
The height (h) will be:
Explanation:
The scape speed equation is given by:

Now, the speed of the missile is


Using the conservation of energy, we can find the maximu height of the missile.



Let's recall that g = GM/R², using the equivalence principle. When R is the radius of the earth and M is the mass of the earth.

Therefore the height (h) will be:
I hope it helps you!