1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AveGali [126]
3 years ago
11

Need help ASAP

Physics
1 answer:
kati45 [8]3 years ago
8 0

Answer:

Explanation:

1.electric

2.radio wave

3.broadcast

Hope it helped you.

You might be interested in
Read through the and calculate the predicted change in kinetic energy of the oblect compared to 50 kg ball traveling at 10 m/s .
Sliva [168]

Answer:

A 50 kg ball traveling at 20 m/s would have 4 times more kinetic energy.

A 50 kg ball traveling at 5 m/s would have 4 times less kinetic energy.

A 50 kg person falling at 10 m/s would have the same kinetic energy.

Explanation:

hope this helps:)

5 0
3 years ago
obesity occurs due to (a) overeating of carbohydrates and fats(b) not eating enough carbohydrates and fats (c) overeating of vit
aniked [119]

Answer:

B for BIG

Explanation:

carbs and fats is energy, if not being use or burned off, it'll be becomes body fat.

5 0
3 years ago
How can you increase the intensity of sound waves
VladimirAG [237]

Answer

The intensity of a sound wave depends on the pressure of the wave,density of the medium and speed of sound in the medium. Higher density and higher sound speed both give a lower intensity. and may be it is because that sound wave is more characterize by wavelength than frequency..explanation

Explanation:

As decibel levels get higher, sound waves have greater intensity and sounds are louder. For every 10-decibel increase in the intensity of sound, loudness is 10 times greater. Intensity of sound results from two factors: the amplitude of the sound waves and how far they have traveled from the source of the sound.

5 0
3 years ago
A 25.0 kg box of textbooks rests on a loading ramp that makes an angle α with the horizontal. The coefficient of kinetic frictio
Alekssandra [29.7K]

Answer:

The minimum angle at which the box starts to slip (rounded to the next whole number) is α=19°

Explanation:

In order to solve this problem we must start by drawing a sketch of the problem and its corresponding fre body diagram (See picture attached).

So, when we are talking about friction, there are two types of friction coefficients. Static and kinetic. Static friction happens when the box is not moving no matter what force you apply to it. You get to a certain force that is greater than the static friction and the box starts moving, it is then when the kinetic friction comes into play (kinetic friction is generally smaller than static friction). So in order to solve this problem, we must find an angle such that the static friction is the same as the force applie by gravity on the box. For it to be easier to analyze, we must incline the axis of coordinates, just as shown on the picture attached.

After doing an analysis of the free-body diagram, we can build our set of equations by using Newton's thrid law:

\sum F_{x}=0

we can see there are only two forces in x, which are the weight on x and the static friction, so:

-W_{x}+f_{s}=0

when solving for the static friction we get:

f_{s}=W_{x}

We know the weight is found by multiplying the mass by the acceleration of gravity, so:

W=mg

and:

W_{x}=mg sin \alpha

we can substitute this on our sum of forces equation:

f_{s}=mg sin \alpha

the static friction will depend on the normal force applied by the plane on the box, static friction is found by using the following equation:

f_{s}=N\mu_{s}

so we can substitute this on our equation:

N\mu_{s}=mg sin \alpha

but we don't know what the normal force is, so we need to find it by doing a sum of forces in y.

\sum F_{y}=0

In the y direction we got two forces as well, the normal force and the force due to gravity, so we get:

N-W_{y}=0

when solving for N we get:

N=W_{y}

When seeing the free-body diagram we can determine that:

W_{y}=mg cos \alpha

so we can substitute that in the sum of y-forces equation, so we get:

N=mg cos \alpha

we can go ahead and substitute this equation in the sum of forces in x equation so we get:

mg cos \alpha \mu_{s}=mg sin \alpha

we can divide both sides of the equation into mg so we get:

cos \alpha \mu_{s}=sin \alpha

as you may see, the angle doesn't depend on the mass of the box, only on the static coefficient of friction. When solving for \mu_{s} we get:

\mu_{s}=\frac{sin \alpha}{cos \alpha}

when simplifying this we get that:

\mu_{s}=tan \alpha

now we can solve for the angle so we get:

\alpha= tan^{-1}(\mu_{s})

and we can substitute the given value so we get:

\alpha= tan^{-1}(0.350)

which yields:

α=19.29°

which rounds to:

α=19°

8 0
3 years ago
A hockey stick of mass ms and length L is at rest on the ice (which is assumed to be frictionless). A puck with mass mp hits the
krek1111 [17]

Answer:

L = mp*v₀*(ms*D) / (ms + mp)

Explanation:

Given info

ms = mass of the hockey stick

uis = 0 (initial speed of the hockey stick before the collision)

xis = D (initial position of center of mass of the hockey stick before the collision)

mp = mass of the puck

uip = v₀ (initial speed of the puck before the collision)

xip = 0 (initial position of center of mass of the puck before the collision)

If we apply

Ycm = (ms*xis + mp*xip) / (ms + mp)

⇒  Ycm = (ms*D + mp*0) / (ms + mp)

⇒  Ycm = (ms*D) / (ms + mp)

Now, we can apply the equation

L = m*v*R

where m = mp

v = v₀

R = Ycm

then we have

L = mp*v₀*(ms*D) / (ms + mp)

5 0
3 years ago
Other questions:
  • Consider lifting a box of mass m to a height h using two different methods: lifting the box directly or lifting the box using a
    8·1 answer
  • The largest planet in our solar system is
    7·2 answers
  • Why are some atoms radioactive
    9·1 answer
  • What causes clouds to form on the upwind side of mountain ranges
    8·1 answer
  • Why did Thomson's results from experimenting with cathode rays a big change in scientific thought about atoms?
    11·1 answer
  • What is the force felt by the electrons and the nuclei in the rod when the external field described in the problem introduction
    11·1 answer
  • Rate of work done against water resistant? Can someone explain why its 3.0W? Thanks.
    11·1 answer
  • A car travels at a constant speed of 30km/h for .80h what is the total distance
    10·1 answer
  • A flat, circular, copper loop of radius r is at rest in a uniform magnetic field of magnitude B that extends far beyond the edge
    9·1 answer
  • Which of the following would be an example of mechanical energy?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!