Find the intensity of the electromagnetic wave described in each case.
(a) an electromagnetic wave with a wavelength of 645 nm and a peak electric field magnitude of 8.5 V/m.
(b) an electromagnetic wave with an angular frequency of 6.3 ✕ 1018 rad/s and a peak magnetic field magnitude of 10−10 T.
Answer:
The observable universe is still huge, but it has limits. because it's most likely like an plane all round.
Explanation:
When the spring is extended by 44.5 cm - 34.0 cm = 10.5 cm = 0.105 m, it exerts a restoring force with magnitude R such that the net force on the mass is
∑ F = R - mg = 0
where mg = weight of the mass = (7.00 kg) g = 68.6 N.
It follows that R = 68.6 N, and by Hooke's law, the spring constant is k such that
k (0.105 m) = 68.6 N ⇒ k = (68.6 N) / (0.105 m) ≈ 653 N/m
Highest to lowest number:
-less than 1 solar mass
-between 1 and 10 solar masses
-between 10 and 30 solar masses
-between 30 and 60 solar masses
<h3>What is Stellar masses ?</h3>
Stellar mass is a phrase that is used by astronomers to describe the mass of a star.
- It is usually enumerated in terms of the Sun's mass as a proportion of a solar mass ( M ☉). Hence, the bright star Sirius has around 2.02 M ☉.
- Stellar masses are not fixed, although they change for single stars only on long periods.
Learn more about Stellar masses here:
brainly.com/question/1128503
#SPJ4
¡Hellow!
For this problem, first, lets convert the seconds in hours:
5,4x10³
5400
h = sec / 3600
h = 5400 s / 3600
h = 1,5
Let's recabe information:
d (Distance) = 386 km
t (Time) = 1,5 h
v (Velocity) = ?
For calculate velocity, let's applicate formula:

Reeplace according we information:
386 km = v * 1,5 h
v = 386 km / 1,5 h
v = 257,33 km/h
The velocity of the train is of <u>257,33 kilometers for hour.</u>
<u></u>
Extra:
For convert km/h to m/s, we divide the velocity of km/h for 3,6:
m/s = km/h / 3,6
Let's reeplace:
m/s = 257,33 km/h / 3,6
m/s = 71,48
¿Good Luck?