Answer:
θ = θ₀ + ½ w₀ (t -t_1) + α (t -t_1)²
Explanation:
This is an angular kinematic exercise the equation for the angular position
the particle A
θ = θ₀ + ω₀ t + ½ α t²
They say for the particle B
w₀B = ½ w₀
αB = 2 α
In addition, the particle begins at a time t_1 after particle A, in order to use the same timer, we must subtract this time from the initial
t´ = t - t_1
l
et's write the equation of particle B
θ = θ₀ + w₀B t´ + ½ αB t´2
replace
θ = θ₀ + ½ w₀ (t -t_1) + ½ 2α (t -t_1)²
θ = θ₀ + ½ w₀ (t -t_1) + α (t -t_1)²
Answer:
The answer to your question is : vf = 15.18 m/s
Explanation:
Data
vo = 24 m/s
d = 120 m
vf = ? when d = 60.0 m
Formula
vf² = vo² + 2ad
For d =100m
a = (vf² - vo²) / 2d
a = (0 -24²) / 2(100)
a = -576/200
a = 2.88 m/s²
Now, when d = 60
vf² = (24)² - 2(2.88)(60)
vf² = 576 - 345.6
vf² = 230.4
vf = 15.18 m/s
Sure let me download it rn
Answer:
Q = 5 L/s
Explanation:
To find the flow you use the following formula (para calcular el caudal usted utiliza la siguiente formula):

V: Volume (volumen) = 200L
t: time (tiempo) = 40 s
you replace the values of the parameters to calculate Q (usted reemplaza los valores de los parámteros V y t para calcular el caudal):

Hence, the flow is 5 L/s (por lo tanto, el caudal es de 5L/s)
they are called "cells"
hope this is the answer is what your looking for.