Answer: 6117.58 J
Explanation:
We know that W=Fd*cos(theta) where theta is the angle between the displacement and the force.
In this case, we are given that F=225 N, d=30 m, and theta=25 degrees.
Plugging all this in we get
W=225*30*cos(25)=6117.58 J
Answer:
341.46miles
Explanation:
Find the diagram attachment.
To get the displacement D, we will use the cosine rule as shown;
D² = 200²+150²-2(160)(400)cos65°
D² = 40000+22500-128000cos65°
D² = 62500+54095.14
D² = 116595.14
D = √116595.14
D= 341.46 miles
Hence the plane final displacement is 341.46miles
The work-energy principle states that an increase in the kinetic energy of a rigid body is caused by an equal amount of positive work done on the body by the resultant force acting on that body. Conversely, a decrease in kinetic energy is caused by an equal amount of negative work done by the resultant force.
Answer:

Explanation:
The magnitude of the net force exerted on q is known, we have the values and positions for
and q. So, making use of coulomb's law, we can calculate the magnitude of the force exerted by
on q. Then we can know the magnitude of the force exerted by
about q, finally this will allow us to know the magnitude of 
exerts a force on q in +y direction, and
exerts a force on q in -y direction.

The net force on q is:

Rewriting for
:

Answer:
F_Balance = 46.6 N ,m' = 4,755 kg
Explanation:
In this exercise, when the sphere is placed on the balance, it indicates the weight of the sphere, when another sphere of opposite charge is placed, they are attracted so that the balance reading decreases, resulting in
∑ F = 0
Fe –W + F_Balance = 0
F_Balance = - Fe + W
The electric force is given by Coulomb's law
Fe = k q₁ q₂ / r₂
The weight is
W = mg
Let's replace
F_Balance = mg - k q₁q₂ / r₂
Let's reduce the magnitudes to the SI system
q₁ = + 8 μC = +8 10⁻⁶ C
q₂ = - 3 μC = - 3 10⁻⁶ C
r = 0.3 m = 0.3 m
Let's calculate
F_Balance = 5 9.8 - 8.99 10⁹ 8 10⁻⁶ 3 10⁻⁶ / (0.3)²
F_Balance = 49 - 2,397
F_Balance = 46.6 N
This is the balance reading, if it is calibrated in kg, it must be divided by the value of the gravity acceleration.
Mass reading is
m' = F_Balance / g
m' = 46.6 /9.8
m' = 4,755 kg