The answer is negative 14
Answer:
a) 1321.45 N
b) 1321.45 N
c) 2.66 m/s^2
d) 2.21*10^-22 m/s^2
Explanation:
Hello!
First of all, we need to remember the gravitational law:

Were
G = 6.67428*10^-11 N(m/kg)^2
m1 and m2 are the masses of the objects
r is the distance between the objects.
In the present case
m1 = earth's mass = 5.9742*10^24 kg
m2 = 497 kg
r = 1.92 earth radii = 1.92 * (6378140 m) = 1.2246*10^7 m
Replacing all these values on the gravitational law, we get:
F = 1321.45 N
a) and b)
Both bodies will feel a force with the same magnitude 1321.45 N but directed in opposite directions.
The acceleration can be calculated dividing the force by the mass of the object
c)
a_satellite = F/m_satellite = ( 1321.45 N)/(497 kg)
a_satellite = 2.66 m/s^2
d)
a_earth = F/earth's mass = (1321.45 N)/( 5.9742*10^24 kg)
a_earth = 2.21*10^-22 m/s^2
We Know, F = m.a
Here, m = 2 Kg
& a = 2 m/s²
Substitute for it,
F = 2*2 Kgm/s²
F = 4 Kgm/s²
Answer:

Explanation:
Given:
- mass of the object,

- weight of the object on planet x,

- radius of the planet,

- radial distance between the planet and the object,

<u>Now free fall acceleration on planet X:</u>


irrespective of the height.
Meteors are burning up in the mesosphere. The meteors make it through the exosphere and thermosphere without much trouble because those layers don't have much air. But when they hit the mesosphere, there are enough gases to cause friction and create heat.