Answer:
The driver hits the stationery dog because the applied force is less than required force
Explanation:
Kinetic energy will be given by
where m is the mass of the vehicle and v is the speed/velocity of the vehicle.
Substituting 800 Kg for m and 20 m/s for v we obtain

Frictional force by vehicle pads is given by
where d is the distance moved
Substituting 160000 for KE and 50 m for d we obtain

Therefore, the vehicle hits the dog since the required force is 3200N but the driver applied only 2000 N
relation between linear velocity and angular velocity is given as

here
v = linear speed
R = radius
= angular speed
now plug in all data in the equation



so rotating speed is 60.9 rad/s
Answer:

Explanation:
For this problem, we can use Boyle's law, which states that for a gas at constant temperature, the product between pressure and volume remains constant:

which can also be rewritten as

In our case, we have:
is the initial pressure
is the initial volume
is the final pressure
Solving for V2, we find the final volume:

Answer:
Explanation:
The concept of elastic and inelastic demand is applied.
for an elastic demand, the elasticity must be greater than 1 and for an Inelastic demand, the elasticity must be less than 1.
The steps and appropriate calculation is as shown in the attached file.
Answer: The correct answer is A.
Explanation: In a solution, the substance which is in larger proportion is called as a solvent and the substance which is in smaller proportion is called as a solute.
When we mix a powdered Gatorade in the water, the Gatorade is present smaller proportion and hence will be considered as a solute in a solution and water is present in larger proportion and will be considered as solvent in a solution.
Hence, the correct option is A.